ארכיון

Posts Tagged ‘פיזיקה’

על דרך מפתיעה לקבל מנמלים גז

הפעם אפתח בחידה. היא אינה חדשה ולא אני חיברתי אותה.

מי שמכיר אותי יודע שאני לא חובב חידות. ובכל זאת, שתי סיבות למה היא כאן: 1) היא מעניינת, לדעתי, גם למי שלא מצליח לפתור אותה, 2) אנסה להראות שניתן להוציא ממנה אפילו יותר ממה שנראה במבט ראשון.

***

החידה פורסמה מזמן על ידי גדי אלכסנדרוביץ' מהבלוג 'לא מדויק' ופורסמה שוב, למיטב זכרוני, לפני שנה-שנתיים על ידו באתר עיתון 'הארץ'.

דמיינו שולחן באורך מטר שעליו צועדות נמלים בקצב של מטר לדקה (הבעיה חד ממדית). כלומר, אם נניח נמלה בקצה השולחן, כאשר פניה מופנות פנימה, היא תיפול מהקצה השני של השולחן לאחר דקה של הליכה. כאשר שתי נמלים נפגשות (ראש בראש) שתיהן הופכות כיוון, כלומר, ממשיכות ללכת במהירות הנתונה, אך בכיוונים הפוכים.

החידה: מספר לא ידוע של נמלים, שראשן מופנה לכיוונים לא ידועים ונמצאות במקומות לא ידועים על השולחן מתחילות את צעידתן. מהו הזמן המינימלי שייקח לכל הנמלים ליפול מהשולחן?

.

.

.

לפני הפתרון בואו וננסה כמה מקרים פשוטים.

עבור נמלה אחת שמתחילה בקצה אנחנו כבר יודעים שהיא תיפול אחרי דקה. זה המקרה הארןך ביותר עבור נמלה בודדת.

נציב שתי נמלים בשני הקצוות עם הפנים פנימה. פגישה במרכז אחרי חצי דקה, סיבוב וצעידה חצי דקה לקצוות עד לנפילה. שוב דקה. אם נמלה אחת בקצה ואחת במרכז מכוונת אליה, גם דקה. בדקו אותי. לא תמצאו מקרה יותר ארוך מדקה. בדקו אותי.

נציב שתי נמלים בקצוות עם הפנים פנימה ואחת במרכז. סה"כ שלוש נמלים. אחרי רבע דקה יש מפגש והיפוך, אחרי חצי דקה נמלה אחת נופלת והשתיים האחרות נפגשות ומתהפכות במרכז, ואחרי דקה כולן נפלו.

מסתמן שהתשובה היא כנראה דקה, ללא תלות במספר הנמלים. אך כיצד להסביר זאת?

נחליף את הנמלים בכדורים זהים אחד לשני. כאשר שני כדורים נפגשים הם מחליפים כיוון ואחד נע ימינה והשני שמאלה. כאשר שני כדורים חולפים אחד דרך השני הם אינם מחליפים כיוון ואחד נע ימינה והשני שמאלה. כלומר, אין הבדל מהותי בין שני המקרים ולכן התוצאות שלהם צריכות להיות זהות. בשני המקרים, לאחר המפגש נצלם שני כדורים זהים שנעים, אחד ימינה ואחד שמאלה.

קל יותר לחשוב על המקרה שבו הכדורים חולפים אחד דרך השני. במקרה זה ברור שזמן התנועה הארוך ביותר הוא של נמלה שמתחילה מהקצה פנימה ונופלת אחרי דקה. כל נמלה אחרת תיפול לפני כן. אמנם 'במציאות' הנמלה שתיפול אחרונה לא תהיה זאת שהיתה בקצה (שככל הנראה תיפול ראשונה), אבל לשם פתרון הבעיה אין לכך משמעות.

יש עוד משהו יפה לטעמי שאפשר להוציא מהחידה זאת והוא דורש מעט מאמץ ומעט מתמטיקה אבל בתמורה הוא יגלה לנו משהו על העולם האמיתי.

***

התראה: עבור מי שאינו מורגל בפיזיקה החלק הבא אולי יהיה מעט מורכב, אך המתמטיקה הנדרשת היא ברמה תיכונית, ולדעתי שווה את המאמץ.

***

דמיינו שוב את אותו השולחן ואותן הנמלים רק שהפעם קצוות השולחן חסומים. כלומר, כאשר נמלה מגיעה לקצה, היא נוגחת בו, מחליפה כיוון וצועדת לכיוון השני במהירות האמורה.

כמה נגיחות יוטחו בקירות בממוצע על פני דקה (כלשהי)?

אם הבנתם את פתרון החידה הקודמת ודאי תסכימו שהפתרון הוא כמספר הנמלים על השולחן. חישבו שוב על הנמלים ככדורים שעוברים אחד דרך השני. ברור שאם כל הנמלים היו נופלות מהשולחן לאחר דקה, במקרה שלנו בממוצע לאורך דקה כלשהי כל אחת תנגח פעם אחת בקיר.

לפי חוק שלישי של ניוטון, נמלה שנוגחת בקיר, דינה להינגח על ידי הקיר בכוח ששווה בגודלו והפוך בכיוונו לכוח נגיחתה. זה גם ברור שכדי שהנמלה תהפוך את כיוון תנועתה הקיר חייב לנגוח בה בעוצמה, כלומר להפעיל עליה כוח.

השינוי בתנועת הנמלה מגולם בפיזיקה בתוך הגודל שנקרא 'תנע' שהוא המהירות כפול המסה. הכוח שפועל לאורך זמן מגולם בגודל שנקרא 'מתקף' שהוא הכוח כפול הזמן (עבור כוח קבוע או כוח ממוצע). מכאן שהשינוי בתנע של הנמלה בעקבות נגיחה בקיר חייב להיות שווה למתקף שהקיר הפעיל עליה. זהו משפט 'מתקף-תנע' והוא נובע ישירות מחוקי ניוטון.

F>·t=Δ(m·v)=m·Δv>

(m מסה, v מהירות, t זמן, F כוח, Δ הפרש כלומר סוף פחות התחלה, <> ממוצע)

אם כן, מהו המתקף הממוצע שפועל על הקיר ביחידת זמן (למשל דקה)? לפי המשפט, זה שווה לשינוי התנע הממוצע של כל הנמלים. שינוי התנע של נמלה בודדת שווה לפעמיים התנע שהיה לה כי היא החליפה כיוון ותנע הוא וקטור (גודל וכיוון), ואת זה נכפיל במספר הנמלים.

F>·t= m·Δv=m·2·v·N>

(N מספר הנמלים)

יחידת הזמן אינה מוגבלת להיות דקה. אוכל לבחור אותה כרצוני. כידוע, זמן שווה דרך חלקי מהירות ולכן נוכל לרשום:

t=L/v

(L אורך השולחן)

F>·t=<F>·L/v =2·m·v·N>

F> =2·m·v2·N/L>

ידוע שהאנרגיה הקינטית, האנרגיה הקשורה בתנועה של חלקיקים, מוגדרת כ:

Ek=0.5·m·v2

ולכן

F> =4· Ek ·N/L>

אם ניקח בחשבון שלמחסומים בקצה השולחן יש שטח פנים שעליו נוגחות הנמלים ונחלק את שני אגפי המשוואה בשטח זה נקבל את הלחץ על דפנות השולחן, שהרי לחץ הוא כוח ליחידת שטח.

F>/S=P =4· Ek ·N/L·S>

(P לחץ, S שטח הדופן)

מכיוון שהשטח כפול האורך שווה לנפח נוכל לרשום:

P·V =4· Ek ·N

(V נפח)

כעת לפינאלה. מי שמכיר כבר היה צריך לחשוד מזמן.

משיקולים תרמודינמיים של מערכות רבות גופים ידוע שהאנרגיה הקינטית הממוצעת של החלקיקים שווה, עד כדי קבוע, לטמפרטורה של המערכת ולכן נוכל לרשום:

P·V =C·N·T

(T טמפרטורה, C קבוע כלשהו)

מה שקיבלנו היא משוואת המצב של גז אידיאלי קלאסי. מודל זה הוא קירוב טוב מאוד לגזים דלילים (שאינם דחוסים, בלחץ נמוך). המשוואה מתארת את הקשרים שחייבים להישמר בין שלושת הגדלים הרלוונטיים למערכת שיכולים להשתנות: הלחץ, הנפח והטמפרטורה.

[הערת שוליים: פתרון הבעיה עבור מרחב תלת ממדי לא ישנה באופן מהותי את התוצאה]

למעוניינים, הנה קישור לדף שבו יש פיתוח יותר סטנדרטי של נוסחת הגז האידיאלי

***

לא רע בשביל כמה נמלים מטופשות שהולכות בסך על שולחן חד ממדי בחידה חסרת פשר. לפחות לדעתי.

מודעות פרסומת
:קטגוריותכללי תגיות: ,

כשלון שכולו הצלחה – על הניסיון לשחזר את ניסוי הרץ

בשנים האחרונות אני משתדל לקחת על עצמי בחופשת הקיץ פרויקט מאתגר שחורג מהפעילות היום-יומית. לפעמים התוצאות מעניינות ולפעמים פחות.

***

בשנת 1865, אחרי שנים רבות של מחקר ופיתוח, פרסם ג'יימס קלרק מקסוול את ספרו "תיאוריה דינמית של השדה האלקטרומגנטי". בספר זה סיכם מקסוול את כל הידוע על חשמל ומגנטיות. בנוסף, הוא הציג בספר בצורה סדורה את התיאוריה הכוללת שלו לנושא, שאותה פרסם קודם לכן בשורה של מאמרים.

התיאוריה של מקסוול היתה מהפכנית. היא החליפה את רעיון הפעולה (של כוחות) ממרחק באופן מיידי, התיאוריה השלטת באותה תקופה, בשדות אלקטרומגנטיים מתפתחים בזמן. השדה, מונח אבסטרקטי לחלוטין, הוגדר ללא מודל מכניסטי. התיאוריה היתה כתובה במתמטיקה מסובכת ולא מזמינה, וכך היא נשארה, כרעיון מעניין ותו לא. אחת התחזיות המעניינות של התורה היתה קיומם של גלים אלקטרומגנטיים שנעים במרחב במהירות האור.

בין השנים 1886-1889 ביצע היינריך הרץ סדרה של ניסויים מפורסמים שבהם הוכיח את קיומם של הגלים האלקטרומגנטיים. ניסויים אלה עזרו לקבע את התורה האלקטרומגנטית של מקסוול כתורה הבסיסית של התחום המקובלת על כולם. הרץ בנה מכשיר שמייצר מתח גבוה בין שתי אלקטרודות כך שנוצרת התפרקות חשמלית ביניהן וניצוץ (ברק קטן). האנטנה הנושאת את הניצוץ הפיצה גלים אלקטרומגנטיים בתדר גבוה (סדר גודל של מאות MHz). את הגלים הוא קלט באמצעות אנטנת דיפול, שהיא בעצם מוט מתכת קטוע במרכזו, בדומה לאנטנה המשדרת. קליטת הגל מעלה את המתח החשמלי על האנטנה, ובמתח גבוה מספיק האוויר 'ייפרץ' חשמלית ויוצר ניצוץ בין הקצוות (ראו איור 1).

איור 1: סכימה של מערך הניסוי של הרץ. משמאל, מקור מתח גבוה מסוג רומקורף מחובר לאנטנת דיפול. מימין, אנטנת קליטה מעגלית עם מקטע חסר לקבלת פריצה במתח גבוה. המקור לאיור: ויקיפדיה, לשם הועלה על ידי המשתמש Hertzian.

הרץ עשה עבודה יסודית והראה גם שידור וקליטת של גלי רדיו בפעם הראשונה, גם את קיטוב הגל וגם הציב מראה לגלים, ומתוך מדידת הגל העומד שנוצר, מדד את מהירות האור.

***

בתחילת הקיץ קראתי ספר על התפתחות רעיון השדה האלקטרומגנטי ששם הוזכר, כדרך אגב, הניסוי של הרץ. הניסוי לא נראה מסובך מדי במונחים של היום. גמרתי אומר לשחזר אותו. הצלחתי להלהיב עוד שותף בעל ידע בפיזיקה, זמן פנוי ויכולת טובה משלי לבנות דברים. ההגבלות ששמנו לעצמנו: לנסות ולשחזר את הניסוי ההיסטורי, ככל שניתן, ולנסות לארוז את זה כך שיתאפשר להדגים זאת בנוחות מול קהל. רצינו להיעזר בעבודות קודמות אך לא מצאנו שום תיעוד ברשת של אנשים אחרים ששחזרו ניסוי זה בשנים האחרונות, וזאת למרות השפע ברשת וקלות החיפוש. כאן היינו צריכים לחשוד, אבל היינו נלהבים מידי.

***

להרכבת אנטנת השידור ניסרנו מוט מתכת חלול באורך חצי מטר לשני חלקים שווים. על הקצוות שהופרדו הרכבנו כדורי מתכת והשארנו אותם קרובים מאוד אחד לשני. זאת הצומת עליה תהיה התפרקות חשמלית וניצוץ. חיברנו את שני צידי המוט המופרדים למקור מתח מסוג רומקורף (Ruhmkorff Induction Coil) שהוא סוג של שנאי שמייצר פולסים מחזוריים של מתח גבוה ממקור מתח ישר נמוך. בכל פעם שהמתח בין הכדורים מגיע לערך גבוה מספיק מתרחשת פריצה חשמלית באוויר בין הכדורים, מטענים חשמלים יעברו מצד לצד דרך האוויר, ואנו נראה ניצוץ. בזמן הניצוץ נוצר גל עומד על פני שני חלקי האנטנה. נקודת המקסימום של הזרם נמצאת במרכזה (באזור הפריצה). בגלל הצורה ואורך האנטנה היא אמורה לתפקד כבורר תדרים לגל שנוצר עליה. התדר העיקרי המצופה להיות מופץ במרחב משוער להיות מסדר גודל של 300 מגה-הרץ.

איור 2 +3: מקור מתח גבוה מסוג רומקורף (Ruhmkorff Induction Coil). למעלה – איור של המכשיר. ניתן לראות סליל בתוך סליל לקבלת שנאי. בצד ימין חוטים לחיבור מתח ישר נמוך ומעליהם הויברטור. מעל לסלילים ניתן לראות את המוטות שברווח ביניהם תיווצר ההתפרקות החשמלית. למטה – סכימה של המכשיר. המקור לאיורים: ויקיפדיה וויקיפדיה. האיור העליון לקוח מספר שפורסם ב-1920 על רכיבי רדיו. האיור התחתון הועלה לויקיפדיה על ידי המשתמש PieterJanR ועובד על ידי המשתמש Chetvorno.

לקליטת 'השידור' הצבנו אנטנת קליטה שהמבנה שלה זהה לאנטנת השידור. בין שני הקצוות המנוסרים חיברנו נורת ניאון קטנה שנדלקת כאשר בין הקצוות שלה מתפתח מתח גבוה מ-70 וולט. בניסוי המקורי הרץ השאיר קצוות מנותקים ומחודדים, עליהם הרכיב מיקרוסקופ והשחית את עיניו בחושך מוחלט במשך חודשים ארוכים כדי לבצע את המדידות. במקרה הזה השיקול של נראות מול קהל, והצורך לשמר שפיות, גבר על הרצון לדיוק היסטורי.

***

כפי שכותרת הרשימה כבר חשפה, זה לא עבד.

הצלחנו להדליק את הנורה, אבל רק במרחקים מאוד קצרים. במרחקים אלה היה עלינו הנטל להוכיח שאנחנו מודדים תוצאה של הגלים ולא של פרופיל השדה החשמלי החזק קרוב לאנטנה. כלומר, להראות שאם נרחיק את קצוות האלקטרודות, כך שנשאר עם שדה חזק אבל ללא פריצה (ללא גל), לא נראה הארה. הגבול בין הארה לחוסר הארה היה מאוד קרוב ולא אמין.

אחת ההצלחות היפות הייתה להראות את קיטוב הגל. כאשר האנטנות היו מקבילות אחת לשניה, קיבלו הארה בנורה. כאשר הצבנו את האנטנות בניצב אחת לשניה, ההארה נעלמה.

ישנם שני כיוונים בסיסיים כדי לשפר את המדידה: לשפר את השידור או לשפר את הקליטה. בתחום השידור ניסינו לשפר את תפקוד אנטנת השידור בכמה דרכים גיאומטריות. ניסינו לסנן תדרים לא רצויים על ידי סלילים (חוסמים תדרים נמוכים). בתחום הקליטה ניסינו להשתמש במגבר מתח ישר להגביר את רגישות הנורה (לעבוד יותר קרוב למתח ההפעלה שלה) ושקלנו להחליף אותה במד מטען (קבל ומד מתח עם התנגדות כניסה גבוהה מאוד) כדי למדוד באינטגרציה על פני זמן.

לאחר חודש עבודה (לא רצופה, קצת פה קצת שם, בכל זאת יש גם עבודה שוטפת) הקיץ שלנו נגמר והתוצאות נשארו לא משכנעות. נכנענו לעת עתה.

***

האם בזבזנו את זמננו?

ברור שלא.

קודם כל למדנו צניעות. אני הייתי משוכנע שעם הציוד המודרני שלנו נוכל לשחזר את הניסוי הבסיסי בשבועיים והיו לי תוכניות המשך. בפועל זה לא קרה. מניסיוני, כך עובד גם מחקר מדעי אמיתי. אם ניסויים היו קלים לביצוע, משהו אחר כבר היה מבצע אותם. בין הפרסומים על הצלחות יש בעיקר המון כישלונות. החוקרים המובילים הם אלו שמספיק מוכשרים כדי להצליח, ומספיק איתנים נפשית כדי להתמודד עם הכישלונות, יום אחרי יום.

למדנו קצת תיאורית אנטנות שבה שנינו לא היינו בקיאים כלל. למדנו איך בונים מד מטען ברמת הרכיבים על הלוח. מצאנו עניין רב בעבודת המחקר ובנושא עצמו, קראנו ספרים ומאמרים והתייעצנו עם מומחים.

במדד פיתוח מוצר 'מוכן לשיווק' נכשלנו כליל, אך במדד העניין והלמידה, הצלחנו מעל ומעבר, ועבורנו זה היה מספיק טוב.

הדהימו את חבריכם! – על נפלאות ה-coherer והקשר שלו לגלי רדיו

נתחיל הפעם בסדנת יצירה של אביזר קסום כדי להדהים את חבריכם. זה דורש מעט התעסקות בידיים, אבל לא משהו מסובך במיוחד.

הציוד הנדרש לבניית האביזר: שני ברגים מתכתיים גדולים עם קצה שטוח, צינור פלסטיק קשיח עם פתח מעט צר יותר מרוחב הברגים, שופין, מלחציים, שקל אחד.

הציוד הנדרש לביצוע הקסם: נורת לד קטנה ופשוטה, נגד+סוללות המתאימים לנורה, חוטי מתכת מוליכים ומצית גדול כמו אלו שקונים לכיריים במטבח.

בניית ההתקן: ראשית יש להבריז את הצינור כך שנוכל להבריג פנימה את הברגים (להבריז = לייצר חריצי הברגה). ההברזה אינה חובה, אך היא מייצרת יציבות מכאנית להתקן. הבריגו את אחד הברגים לתוך הצינור כך שחציו בפנים וחציו בחוץ והוא מגיע עד למרכזו של הצינור (אין צורך לדייק). שייפו את השקל לקבלת אבקה. אין צורך בכמות גדולה. שיפכו מעט אבקה לתוך הצינור והבריגו את הבורג השני כך שהאבקה נמצאת בין שני הקצוות השטוחים של הברגים בתוך הצינור.

להכנת הקסם חברו מעגל חשמלי טורי של סוללות, נורת לד קטנה פשוטה, נגד מתאים והרכיב שבניתם. הבריגו את הברגים בעדינות פנימה לתוך הצינור עד שתקבלו הולכה חשמלית ואור בנורה. הרחיקו בעדינות את הברגים זה מזה מעט כך שהאור כבה. כעת קרבו את המצית אל המעגל והדליקו אש. הפלא ופלא, הנורה תידלק!

במקרה הכינותי מראש מעגל עם coherer.

הרכיב שבנינו הוא גרסה פשוטה ופרימיטיבית של Coherer.

האבקה ששייפנו מהשקל מכילה כמות מספקת של ניקל, שהוא חומר פרומגנטי (בדומה לברזל וקובלט). במצב הראשוני דאגנו שצפיפות חלקיקי האבקה בין הברגים תהיה נמוכה כך שהמוליכות החשמלית נמוכה ולא זורם די זרם להדליק את הנורה. מסיבה שלא ידועה היטב, בנוכחות של גלים אלקטרומגנטיים חזקים מספיק, גרגירי האבקה הפרומגנטית נדבקים אחד לשני כך שנוצר שביל הולכה חשמלית, המוליכות של הרכיב עולה באופן משמעותי, הזרם עולה והנורה נדלקת. כדי לחזור למצב הראשוני יש להקיש בעדינות על הרכיב.

לחיצה על הכפתור של המצית מייצרת באופן רגעי מתח גבוה מאוד בין שתי האלקטרודות המתכתיות בקצותיו (לדעתי אלפי וולטים, לא בדקתי). המתח מייצר שדה חשמלי שגבוה משדה הפריצה של האוויר, כך שהאוויר הופך רגעית ממבודד חשמלית למוליך וזרם יזרום דרך האוויר בין שתי האלקטרודות. אנחנו נראה ניצוץ והוא זה שיצית את הגז לקבלת אש.

הניצוץ החשמלי הוא זה שמייצר גלים אלקטרומגנטיים המתפזרים לכל עבר. גלים אלה חזקים מספיק כדי להפעיל את ה-coherer, להעלות את המוליכות ולהדליק את הנורה.

אם ברצונכם להשתעשע, בקשו מהקהל להדליק את הנורה עם גפרור וכאשר הם לא מצליחים הדגימו עם המצית. ניסיתי, הקהל משתעשע. לכיבוי הנורה יש להקיש בעדינות על הצינור.

ה-coherer יכול לשמש כקסם נחמד, אך יש לו גם חשיבות היסטורית בהתפתחות הרדיו. במובן מסוים, ה-coherer הוא מה שקדם למה שקדם לטרנזיסטור.

***

בסוף המאה ה-19 החל לעבוד גוליילמו מרקוני האיטלקי על פיתוח טלגרף אלחוטי. את רעיונותיו הראשוניים הוא שאב מהניסויים המפורסמים של היינריך הרץ שבהם הוכיח זה את קיומו של גל אלקטרומגנטי כפי שחזתה התיאוריה של ג'יימס קלרק מקסוול, ובכך שכנע את קהילת הפיזיקאים בתקפותה ובחשיבותה. הרץ יצר התפרקויות של מתח גבוה ובכך שידר גלים אלקטרומגנטיים (בתחום תדרים שהיום אנחנו מכנים גלי רדיו) שאותם קלט באנטנה. מנקודה זאת החל מרקוני את עבודתו. בדרך להצלחה הוא ביצע מספר שיפורים משמעותיים בקליטה ובשידור. אחד מהשיפורים היה שימוש ב-coherer, שהיה סוג של גלאי שאותו ראה מרקוני בניסוייו של הפיזיקאי אוליבר לודג' בשידור וקליטה של גלים אלקטרומגנטיים.

הרעיון הבסיסי של שימוש ב-coherer בטלגרף אלחוטי מסתמך על כך שהרכיב מזהה שידור של גל אלקטרומגנטי ובתגובה סוגר מעגל חשמלי, בדומה להדגמה שתיארתי. המעגל מדווח למפעיל הטלגרף שהתקבל אות (קו או נקודה) וגם מייצר נקישה מכאנית על הרכיב שגורמת לפתיחת המעגל. כך, כל אות שידור שמגיע סוגר ופותח את המעגל החשמלי והמידע שהיה בעבר מגיע דרך חוטי הטלגרף, מגיע באופן אלחוטי.

כבר בתקופתו של מרקוני ה-coherer היה ידוע כרכיב לא אמין ולאחר מספר שנים הוחלף ברכיבים מוצלחים יותר. כיום, לאחר מהפכית המוליכים למחצה וההתקדמות הרבה בתחום האנטנות, ל-coherer נותר רק ערך היסטורי. עם זאת, הוא כל כך פשוט לבנייה שעדיין יש לא מעט אנשים שנהנים להרכיב איתו מעגלים כתחביב, כפי שניתן לראות בשני הסרטונים הקצרים הבאים (ובהרבה אחרים).

הנושף לבקבוקים – על רזוננס הלמהולץ (הפעלה + הסבר פיזיקלי)

הקיץ בעיצומו, השמש קופחת, הלחות מרקיעה שחקים, החופשה מתארכת, הזיעה ניגרת, הילדים נוזלים, ההורים נוזלים.

בואו ונשחק במים, אבל באופן חסכוני. אולי גם נלמד משהו חדש.

כשירות לציבור אפתח הפעם בהצעה לפעילות משותפת של הורים וילדים בנושא הפקת צלילים ובניית מכשיר נגינה. כל שנדרש הוא 5 בקבוקים (עדיף מזכוכית) וטלפון סלולרי. ניסיתי את הפעילות רק על 'ילדים' גדולים אבל לא עם ילדים אמיתיים. אם מישהו מנסה, אשמח לשמוע אם היה מוצלח, וגם אם לא.
הערת שוליים: קרדיט לעמית יוסוביץ, מורה לפיזיקה בתיכון דרכ"א לוד שמסמינר שלו שאבתי במקור את הרעיון.

***

האם שרקתם פעם באמצעות בקבוק? הצמידו את הפיה של הבקבוק לפה מתחת לשפה התחתונה ונשפו בעדינות אוויר פנימה. אם הבקבוק לא שורק נסו לשנות מעט את זווית הנשיפה ואת עוצמתה. אני מצאתי שבקבוקי בירה (330מל') הם הקלים ביותר לשריקה ובקבוקי יין (או ויסקי וכדומה) מעט קשים יותר. אפשר לשרוק גם בבקבוקי מים מפלסטיק (330מל' נביעות או מי עדן לדוגמה) אך זה קצת יותר קשה ומצריך זווית נשיפה מעט שונה. כאשר גובה המים קרוב לצוואר הבקבוק לא ניתן לשרוק.

כדי שבקבוק ישרוק צריך שיהיה בו אוויר וצריך גם שתהיה לו פיה צרה וארוכה (באופן יחסי). נפח האוויר וצורת הצוואר הם מה שקובעים את התו המוזיקלי המופק. בהמשך אסביר זאת בפירוט. מלאו את הבקבוק בכמויות משתנות של מים ושירקו שוב. ודאי תשימו לב שככל שכמות המים גדלה (ונפח האוויר קטן), הצליל המופק נהיה גבוה יותר.

כעת נרצה לבנות מכשיר נגינה דמוי חליל פאן (אין צורך להבין בנגינה). לשם כך עלינו לכוון את כמות המים בכל בקבוק כך שתתאים לתו מוזיקלי. כיוונון הבקבוקים לא שונה מכיוונון מיתרי גיטרה ולכן נוכל להיעזר באפליקציה לטלפון הסלולרי למטרה זאת. אני השתמשתי באפליקציה שנקראת DaTuner וביצעה היטב את הדרוש. אני בטוח שיש רבות וטובות, אבל לא ניסיתי. פותחים את האפליקציה, שורקים, ועל המסך ניתן לראות את שם התו, את תדירות גל הקול ביחידות הרץ (Hz) ואת דיוק הכיוונון.

אני השתמשתי בבקבוקי בירה שבהם טווח התדרים שניתן להפיק הוא 190-490 הרץ בערך (כלומר מ-G3 ועד B4). לכן התווים שבחרתי לכוון הם:

C – 262Hz – do

D – 294Hz – re

E – 330Hz – mi

F – 349Hz – fa

G – 392Hz – sol

תמונה 1: חמשת הבקבוקים עם תוויות המציינות את הצליל המופק. הפס האופקי הלבן מסמן את גובה המים. הבקבוקים אינם זהים כי זה מה שהיה לי בבית.

תוכלו בהזדמנות זאת לבדוק האם הכפלת תדר אכן משמעותה עלייה באוקטבה, למשל בתדרים 220 ו-440 הרץ (A3 ו-A4). כמו כן, ליצירת תווים נוספים תוכלו להיעזר בטבלאות המקשרות בין תווים ותדרים, למשל זאת.

ואי אפשר לבנות כלי נגינה בלי לנגן עליו את הנעימה שחרכה אין ספור אוזניים של מורים לנגינה, "יונתן הקטן", כמובן. התווים הדרושים:

GEE FDD CDEFGGG GEE FDD CEGGC

נסו לנגן גם את זה:

EE F GG FEG CC D EE DD

קשה מבלי לדעת מה המקצב הדרוש, נכון?

למנגינות אחרות נזדקק לתווים נוספים.

***

בואו ונדבר קצת פיזיקה.

צלילים הם בעצם שינויים בצפיפות האוויר שנעים במרחב, מגיעים לחיישן באוזן שלנו ומתורגמים לשמיעה. כלומר השינויים בצפיפות נעים במרחב, לא האוויר עצמו. אתם תשמעו אותי גם אם אעטוף את ראשי בשקית.

גלי קול מחזוריים הם שינויים מחזוריים בצפיפות באוויר (ראו גיף 2). הם מאופיינים על ידי התדר שלהם, אורך הגל, עוצמת התנודה משיווי משקל (בעגה: אמפליטודה או משרעת) ומהירות ההתקדמות. התדר הוא מספר הפעמים שהגל משלים מחזור בשניה (262Hz = השלים 262 מחזורים בשניה), אורך הגל הוא המרחק שעוברת חזית הגל בזמן מחזור אחד של הגל, עוצמת התנודה היא צפיפות האוויר המקסימלית ומהירות הגל היא מהירות התקדמות הקול באוויר (340 מטר לשניה בערך). ראו המחשה על גבי איור 3.

גיף 2: המחשה של גלי קול או גלי צפיפות או לחץ בחומר המתפשטים בצורה כדורית ממקור במרכז. שימו לב שגלי הצפיפות נעים החוצה אבל כל נקודה מבצעת תנועה מחזורית הלוך וחזור ואינה מתקדמת. המקור לגיף: ויקיפדיה, לשם הועלה על ידי המשתמש Thierry Dugnolle.

איור 3: רגע קפוא בזמן מהגיף הקודם להבהרת המושגים: אורך הגל, משרעת, תדירות ומהירות. המקור לגיף: ויקיפדיה, לשם הועלה על ידי המשתמש Thierry Dugnolle.

כאשר מיתר גיטרה רוטט הוא גורם לשינויי צפיפות של האוויר לידו. שינויים אלה מתפשטים במרחב לכל הכיוונים. המיוחד במיתר של הגיטרה הוא שהצליל שמופק תלוי בעוביו וכמה הוא מתוח. כלומר המיתר הוא מכשיר לברירת תדירויות תנודה. ככל שעוביו (מסה ליחידת אורך) גדול יותר הצליל המופק נמוך יותר, כלומר תדירות תנודה נמוכה יותר. ככל שמתיחותו גדולה יותר כך הצליל גבוה יותר, כלומר תדירות תנודה גבוהה יותר. מי שמעוניין להעמיק יותר על הקשר בין תכונות המיתר לצליל שהוא מפיק מוזמן לקרוא על גל עומד במיתר, למשל כאן. התדר הולך כמו 1 חלקי אורך המיתר, וניתן לבדוק קשר זה בקלות עם הגיטרה והטיונר בטלפון. לסיכום, העיקרון במיתר גיטרה הוא ששינוי בתכונות המיתר (בזמן נגינה זה שינוי אורך) מוביל לשינוי בתדירות התנודה היחידה שהוא מאפשר (התו שנשמע).
הערת שוליים: אני עוסק אך ורק בהרמוניה הבסיסית והלא בהרמוניות גבוהות או באוברטונים. למעוניינים כתבתי בעבר על 'מוזיקה מרובעת'.

אבל איך כל זה קשור לבקבוקים שורקים?

***

כאשר נושפים לתוך הבקבוק, האוויר בצוואר נדחס פנימה ודוחס את האוויר בגוף הבקבוק. דחיסת האוויר בבקבוק גורמת לעליית הלחץ בתוכו. בשלב מסוים הלחץ בפנים גדול כל כך מהלחץ בחוץ כך שהוא דוחף את האוויר החוצה. האוויר היוצא גורם לירידה של הלחץ בפנים עד לרמה שבה הלחץ בחוץ גבוה יותר ואוויר שוב נדחס פנימה, וחוזר חלילה. האוויר בצוואר הבקבוק מבצע תנודות מחזוריות פנימה והחוצה ובכך, בדומה למיתר, מפיק צליל שמתפשט במרחב.

דבר נוסף המקשר בין מיתר גיטרה לבין הבקבוק השורק הוא ברירת התדרים (מצב שבו יש עדיפות לתדרים מסוימים על אחרים נקרא בעגה רזוננס). הבקבוק שורק בצליל בודד קבוע. כדי להסביר זאת דמיינו משקולת התלויה על קפיץ שמחובר לגוף יציב ונייח כלשהו (למשל תקרה). הקפיץ מתוח במידת מה והמשקולת אינה נעה. אם נסיט את המשקולת משיווי משקל היא תחל להתנודד בקצב קבוע מעלה ומטה. קצב זה תלוי אך ורק בקשיחות הקפיץ ובמסת המשקולת. גם אם קיים חיכוך, מה שישתנה זה מרחק ההסטה משיווי משקל ולא תדירות התנודה (אם יש לכם קפיץ רך בבית, בדקו אותי). מסת האוויר בצוואר הבקבוק אנלוגית למסת המשקולת ונפח האוויר בבקבוק אנלוגי לקשיחות הקפיץ.

איור 4: איור סכמטי של רזוננס הלמהולץ. רטט האוויר בצוואר הבקבוק בתדירות קבועה הוא הקובע את הצליל המופק על ידי הבקבוק.

תדירות התנודות של האוויר בצוואר היא תדירות הצליל המופק מהבקבוק והוא מכונה בעגה "רזוננס הלמהולץ". ככל שנפח האוויר קטן התדירות עולה (צליל גבוה יותר).

מניתוח המודל המתמטי של אנלוגיית המשקולת על הקפיץ ניתן להסיק שהתדירות הולכת כמו 1 חלקי שורש נפח האוויר. תוכלו לבדוק זאת בניסוי ביתי (את הילדים זה כבר לא יעניין…). ניתן להיעזר במזרק או במשורה למדידה מדויקת של נפחי המים.

סרטון מעניין שממחיש את הנושא של רזוננס הלמהולץ:

***

לסיום, לחובבי הז'אנר בלבד, אני מצרף את הפיתוח המלא של מודל המתמטי לקבלת התדר של שריקת הבקבוק. שימו לב שהתוצאה תלויה במהירות הקול באוויר ולכן ניתן להיעזר בקשר זה ונסות ולהעריך אותה משיפוע הגרף (תדר כפונקציה של 1 חלקי שורש נפח האוויר). להעריך ולא למדוד מכיוון שהגדלים בנוסחה שקשורים לצוואר הם גדלים אפקטיביים בגלל תופעות מורכבות יותר שקשורות בזרימת האוויר וגם בכך שתהליך אינו איזוטרמי.

:קטגוריותכללי תגיות: , ,

קווים לדמותו – פאראדיי, מקסוול והשדה האלקטרומגנטי: יומן קריאה

קראתי ספר ואני רוצה לספר עליו.

הספר 'Faraday, Maxwell, and the electromagnetic field' עוסק בהמצאתו וניסוחו של השדה האלקטרומגנטי. הכותבים Nancy Forbes ו-Basil Mahon טווים את סיפורו של השדה דרך ביוגרפיות מקוצרות של שני אנשי המדע שפיתחו אותו, מייקל פאראדיי וג'יימס קלרק-מקסוול, תוך התמקדות באירועים הרלוונטיים, מכיוון ששניהם תרמו רבות גם בתחומים אחרים.

אבל לפני שאגיע לספר, מהו בכלל שדה אלקטרומגנטי? עסקתי בו בעבר אבל אני רוצה לגשת אליו הפעם מכיוון מעט שונה.

תמונה 1: עטיפת הספר.

***

ידוע שלתכונה שנקראת 'מטען חשמלי' יש שני מופעים שאחד אנחנו מכנים 'מטען חיובי' והשני 'מטען שלילי'. כמו כן ידוע ששני מטענים בעלי תכונה דומה דוחים זה את זה ושני מטענים בעלי תכונה שונה מושכים זה את זה. נשרטט קו ישר בין מיקומם של שני המטענים, ונוכל לומר שהכוח הוא תמיד בכיוון הקו הזה (או משיכה, או דחיה). כעת את אחד המטענים נדביק למקום ואת השני נמקם בכל פעם בנקודה אחרת. בכל נקודה חדשה נשרטט קו חדש למציאת כיוון הכוח. מה שנקבל לאחר מספר מיקומים הוא סדרה של קווים שיוצאים או נכנסים (דחיה או משיכה) למטען המודבק. סיימנו עם המטען הנייד, אפשר להעיף אותו.

הקווים שקיבלנו, שנראים כמו שמש עם קרניים, נקראים קווי השדה, והם אלה שנובעים ממטען מקור (המטען המודבק, ראו איור 2). משמעותם היא שאם נשים בנקודה כלשהי מטען נוסף (כמו המטען הנייד ממקודם), הכוח שיפעל עליו יהיה בכיוון משיק לקווים ששרטטנו בנקודה. ישנה נוסחה לחישוב גודלו של הכוח, שתלויה בעוצמת המטענים ובדעיכה לפי המרחק בריבוע, אבל נעזוב את זה לעת עתה.

איור 2: קווי שדה של מטען נקודתי.

זה נשמע אבסטרקטי למדי. האם מושג השדה הוא הכרחי?

***

לפני קבלת התורה האלקטרומגנטית של מקסוול הדעה הרווחת בין מדענים היתה שכוח חשמלי פועל ממרחק ובאופן מיידי. נניח שיש לי מטען נייד שמשמש לי כמכשיר מדידה, ומרגיש בכל רגע את הכוח החשמלי שמפעיל עליו המקור. אם 'נכבה' או נעלים את מטען המקור, הגלאי ידווח מיידית על העלמות הכוח. כלומר, המידע על העלמות המקור יגיע מיידית לגלאי. היום זה נשמע לנו מוזר אבל למדענים אז לא היתה סיבה טובה לפקפק בכך.

נחזור למטען המקור שלנו ואל קווי השדה שהקשורים אליו. ננסה לדמיין מה יקרה לשדה אם נסיט את המטען מעט מעלה ואז נחזירו למקומו המקורי. מצב 1: מטען בנקודה נמוכה, מצב 2: מטען בנקודה גבוהה, מצב 3: מטען שוב בנקודה נמוכה.

לשם פשטות נשרטט אך ורק את קו השדה שיוצא ימינה בכיוון אופקי. במצב 1 הוא נמוך, במצב 2 גבוה ומצב 3 חוזר להיות נמוך. כעת נזכר שהזזת המטען מהנקודה הנמוכה לגבוהה וחזרה לוקחת זמן. בזמן ההזזה קווי השדה עדיין קיימים אך הם משתנים בהתאם למצב באותו הרגע. לכן קו השדה הימני הוא נמוך ואז ברגע ההזזה נהיה גבוה יותר ויותר ואז חוזר להיות נמוך ונשאר כך. בעצם ייצרנו הפרעה בקו שדומה ליצירת הפרעה בחבל מתוח על ידי נענוע שלו בקצה (ראו איור 3). ההפרעה תתקדם לאורך החבל וזה מה שאנחנו מכנים גל מכני. באופן דומה ההפרעה בקווי השדה תתקדם במרחב והיא הגל האלקטרומגנטי (החלק החשמלי שלו).

אני ממליץ למי שמוצא את איור 3 לא ברור לשחק עם הסימולציה בקישור הזה. במקרה זה אנימציה עובדת טוב יותר מאיור סטטי.

איור 3: הזזה של מטען גורמת לשינוי תלוי זמן בשדה ולהתפשטות של גל אלקטרומגנטי במרחב.

מטען המקור הנע הוא בעצם סוג של אנטנת שידור של גלים אלקטרומגנטיים. את הגלים האלה ניתן לקלוט על ידי אנטנת קליטה שגם היא בעצם מטען נייד בתוך מוליך. אם ההפרעה בקווי השדה אכן נעה במרחב, המטען החשמלי באנטנת הקליטה ינוע גם הוא כאשר היא תגיע אליו. באמצעות מגבר נוכל למדוד את הזרם שנוצר.

כאשר היינריך הרץ מדד את הגלים האלה בפעם הראשונה (1886-1889) הוא למעשה אישש את התיאוריה המוזרה והשנויה במחלוקת של מקסוול על שדות אבסטרקטיים במרחב. בנוסף, הרץ אישר בניסויים את הטענה של מקסוול שהגלים ינועו במהירות האור (באמצעות מדידת גל עומד) ולכן סביר היה להניח שגם האור הוא סוג של גל אלקטרומגנטי.

***

שימו לב שהצורה שבה בחרתי להסביר את מהות השדה האלקטרומגנטי היא אנכרוניסטית. לדוגמה: האלקטרון, כלומר מטען כחלקיק, התגלה רק ב-1897. מקסוול כתב את המאמרים האחרונים על תורת השדות שלו כבר ב-1865. ספרי לימוד בפיזיקה אינם נכתבים בסדר כרונולוגי של גילוי. זה מה שהופך אותם למובנים לקורא 'הטירון'.

***

מה מחפשים קוראים בספרי מדע פופולרי? האפשרויות שעלו בראשי היו: א) ללמוד על נושא מדעי אבל לא ברמה אקדמית, ב) ללמוד על ההיסטוריה של נושא מדעי בין אם מכירים אותו ברמה אקדמית או בין אם לא, ג) לקרא סיפור מעניין שמתמקד במדענים או ברעיון מדעי. הדגש באפשרות הראשונה הוא מדעי, הדגש בשניה היסטורי והדגש בשלישית הוא סיפורי. רוב הספרים יכילו אלמנטים של שלושת הדגשים אך לא במידה שווה.

***

נחזור לספר.

הספר הוא כרונולוגיה של רעיון השדה דרך סיפור חייהם של ממציאיו ומנסחיו, פאראדיי ומקסוול. מחד, החוזק שלו הוא בסיפור המעניין על חייהם (השונים) ועל השיקולים שלהם שהולידו את הרעיונות והגילויים. כל זאת נעשה, לדעתי, בכישרון רב. הדמויות קמות לחיים והקריאה קולחת. מאידך, נקודת התורפה של הספר היא בהסברים על המדע, תיאוריה וניסויים, שאינם ברורים לקורא שאינו מכיר אותם ממקורות קודמים, ויתקשה להבינם מקריאה בספר זה.

מעבר לפרטי הביוגרפיות של פאראדיי ומקסוול למדתי מהספר שהתיאוריה האלקטרומגנטית של מקסוול היתה מהפכנית. לא רק שהיא הניחה שלכוח החשמלי יש תלות בזמן, אלא שהיא היתה הראשונה שלא היה מאחוריה מודל מכניסטי. אין עקרונות מכניים שמסבירים את קיום או את פעולת השדות החשמלי והמגנטי (לדוגמה לחצים או חיכוך בתוך החומר). היא היתה אבסטרקציה מוחלטת של הפיזיקה. מסיבה זאת היה קשה לקהילת המדענים לקבל תורה זאת בזמן שפורסמהעל ידי מקסוול. זאת ועוד, המתמטיקה שבה נכתבה היתה בלתי נסבלת אפילו לפיזיקאים.

אולי יעניין אתכם גם לדעת שאת צורתם המוכרת כיום של 'משוואות מקסוול', שניתן לראות על חולצות וכוסות קפה, לא כתב מקסוול עצמו, אלא היתה עיבוד של התורה בידי אוליבר הביסייד, ברנש מוזר ביותר, אך בעל זכויות רבות.

ממתק נוסף שנמצא בספר הוא טבלה מסודרת של כל הגילויים החשובים בחשמל ומגנטיות משנת 1600 ועד שנת 1905 (איינשטיין), מסודרים בצורה כרונולוגית ונוחה לעיון. הרשימה עושה סדר בראש מבחינה כרונולוגית לכל התחום.

***

לסיכום, נהניתי לקרוא את הספר ואני מרגיש שהרווחתי ממנו הרבה ידע חדש. הוא שם היטב את 'החומר מספר הלימוד' בפרספקטיבה היסטורית. כל עוד לוקחים בחשבון מראש מה הספר מסוגל לתת ומה לא, ההנאה ממנו, לדעתי, מובטחת.

הג'ורה של המעגל – על חיבור הארקה או אדמה

האם תהיתם פעם מדוע בשקע החשמל בקיר יש שלושה חורים?

האם שמתם לב שלפעמים בתקע יש שני פינים ולפעמים שלושה?

אם אכן תהיתם על כך, הגעתם למקום הנכון. אבל ראשית נתחיל בראשית.


תמונה 1: שקע ותקע ישראלי. המקור לתמונה: ויקיפדיה, לשם הועלתה על ידי המשתמש Kiddo.

***

מדוע מים זורמים במורד ההר ולא במעלה ההר? ישנן שתי דרכים לענות על השאלה הזאת, ושתיהן אומרות את אותו הדבר.

דרך א': על כל מולקולת מים פועל כוח כבידה שכיוונו תמיד למרכז כדה"א, כלומר 'למטה'. לכן המים תמיד 'שואפים' לרדת למטה ולא לעלות למעלה.

דרך ב': כאשר מים יורדים מטה הם יכולים לסובב גלגל ולעזור לטחון קמח או לסובב טורבינה. כלומר מים שיורדים יכולים לבצע עבודה. מים במיקום גבוה יכולים לבצע יותר עבודה ממים במיקום נמוך. את היכולת לבצע עבודה אנחנו מכנים בעגה בשם 'אנרגיה', ולכן מים גבוהים הם בעלי אנרגיה (פוטנציאלית כובדית – שמקורה בכוח כבידה) גבוהה יותר ממים נמוכים. גופים שואפים להיות באנרגיה (פוטנציאלית) מינימלית. זאת הסיבה שמים תמיד יזרמו ממקום גבוה למקום נמוך – מאנרגיה גבוהה לנמוכה.

מה נעשה כאשר כל המים הגבוהים ירדו למטה ואנחנו רוצים שהגלגל ימשיך להסתובב? נצטרך להעלות את המים חזרה למעלה, למשל על ידי משאבה, כלומר נצטרך לבצע עבודה כדי להעלות את המים מאנרגיה נמוכה לגבוהה. בטחנת קמח או בתחנת כוח הידרואלקטרית נרצה שמישהו אחר יבצע את העבודה של העלאת המים במקומנו ואנחנו רק נקצור את העבודה בירידתם.

נשים לב שנוצר כאן מעגל זרימה. המים זורמים מאנרגיה גבוהה לנמוכה ואז מועלים שוב לאנרגיה גבוהה על ידי גורם חיצוני (למשל משאבה).


איור 2: סכר, תחנת כוח הידרואלקטרית. מים יורדים בגבוה לנמוך, מאבדים אנרגיה פוטנציאלית כובדית ומבצעים עבודה בסיבוב טורבינה שמייצרת חשמל. המקור לאיור: ויקיפדיה, לשם הועלה על ידי המשתמש Tomia.

***

במעגל חשמלי זורמים מטענים חשמליים והוא עובד, במובנים מסוימים, כמו מעגל המים שתואר בחלק הקודם. מטענים חשמליים (חיוביים, ראו הערה בסוף) זורמים מאנרגיה גבוהה לנמוכה ואז מועלים חזרה לאנרגיה גבוהה על ידי גורם חיצוני (סוללה, ספק מתח).


איור 3: מטען חשמלי (חיובי) זורם מאנרגיה פוטנציאלית חשמלית גבוהה לנמוכה. ספק מתח או סוללה מחזירים אותו לאנרגיה גבוהה.

באופן מופשט יותר ניתן לחשוב שכדי ליצור זרימה חשמלית קבועה אנחנו זקוקים לשתי נקודות במרחב שנמצאות בהפרש אנרגיות קבוע אחת ביחס לשניה. בין הנקודות נחבר צינור המאפשר זרימה. שתי הנקודות העליונות בשקע החשמל בקיר הן בדיוק נקודות כאלה שבהן חברת החשמל מתחייבת לספק הפרש אנרגיות קבוע (מתח חשמלי). אם נחבר ביניהן צינור (למשל טוסטר משולשים) נקבל זרימה קבועה ונוכל להפיק מהזרימה עבודה (חימום הטוסטר). כמות הזרימה (הזרם החשמלי) תלוי באופי הצינור (ההתנגדות החשמלית) ושניהם יקבעו את כמות העבודה שנפיק בכל שניה (הספק שנמדד ביחידות וואט).

אז לשם מה יש חור שלישי?

***

כיצד מתקבלת נקודה שבה האנרגיה החשמלית של מטען גבוהה ביחס לנקודות אחרות?

ראינו בתחילת הרשימה שמושג האנרגיה קשור בכוח ולכן אנרגיה פוטנציאלית חשמלית תלויה בכוח חשמלי.

ישנם שני סוגים של מטענים חשמליים (חיובי ושלילי). שני מטענים זהים דוחים אחד את השני ושני מטענים שונים מושכים אחד את השני. אם נניח שני מטענים חיוביים, אחד נייד ואחד נייח, אחד ליד השני, הם יפעילו כוחות דחייה אחד על השני. אם כך, המטען הנייד יחל לנוע, לסובב גלגל ולטחון קמח. כלומר נוכל להפיק ממנו עבודה. מאנלוגית המים נוכל להבין שהמטען הנייד נע מאנרגיה חיובית לאנרגיה שלילית, ולכן מובן שהוא מתדרדר במורד מדרון אנרגטי חשמלי.

מכאן יוצא שכדי לקבל הר (אנרגיה גבוהה) אנחנו צריכים עודף מטענים חיוביים בנקודה ביחס לנקודה אחרת, וזה, לפחות קונספטואלית, מה שעושים סוללה, ספק מתח או חברת החשמל.

***

בחומר מוליך מטענים חשמליים יכולים לנוע מנקודה לנקודה ללא תשלום של עבודה, כלומר האנרגיה החשמלית עבור מטען בכל נקודה זהה.

האנרגיה של מים גבוהים היא העבודה שיש להשקיע כדי להעלות אותם מלמטה. באופן אנלוגי, האנרגיה של מטען בנקודה היא העבודה שיש להשקיע כדי להביא אותי לנקודה ממקום שלא פועלים עליו כוחות חשמליים כלל.

נדמיין כדור מוליך טעון. ככל שהכדור טעון במטען חיובי רב יותר כך יש כוח חשמלי רב יותר שמתנגד להבאת מטען חיובי נוסף. ככל שהכדור גדול יותר כך קל יותר להביא מטען נוסף כי המטענים אינם צריכים להיצמד אחד לשני. אם כך, ככל שמטענו של הכדור המוליך קטן יותר ורדיוסו גדול יותר כך האנרגיה הפוטנציאלית החשמלית של הכדור נמוכה יותר.

אם נחבר שני כדורים מוליכים אחד לשני, מטענים יזרמו מכדור אחד לשני עד אשר יהיה שוויון אנרגיות (שוויון גבהים) ביניהם. אם גודלו של אחד הכדורים עצום ביחס לכדור השני זה אומר שני דברים: 1) האנרגיה שלו נמוכה יותר, 2) האנרגיה שלו לא משתנה כמעט בכלל עקב שינוי (קטן) של המטען עליו. אם כך, מה שיקרה לאחר החיבור הוא שכל המטענים יזרמו מהכדור הקטן לכדור הגדול.

כעת החליפו את הכדור הקטן במכונת הכביסה שלכם ואת הכדור הגדול בכדור הארץ וקיבלתם את ההגדרה להארקה, שהיא החור השלישי בקיר. מהסיבה הזאת הוא גם מכונה 'אדמה', 'ground' 'GND', 'ארדונג' וכדומה.

תמונה 4: שקע חשמל עם סימונים על החורים השונים. חור אדום – מתח גבוה, חור כחול מתח נמוך, חור ירוק\צהוב – הארקה. המקור לתמונה: ויקיפדיה, לשם הועלתה על ידי המשתמש Kiddo.

אם אחד מחוטי החשמל נחשף עקב תקלה ונוגע בדופן המתכת של המכונה אתם בסכנת התחשמלות אם תגעו בה ברגליים יחפות. חיבור ההארקה שמחובר לגוף מתכתי גדול ואז לכדור הארץ, ישאב אליו את כל המטענים ויציל אתכם מהתחשמלות. במכשירי חשמל שגופם אינו עשוי ממתכת, אין סכנת התחשמלות מהגוף ולכן לא יהיה חיבור להארקה ובתקע יהיו רק שני חוטים.

הארקה ניתן לקבל מהקיר, ששם החוט מחובר דרך צנרת הביוב לאדמה. אם מדובר במעגלי זרם נמוך ניתן להאריק אותם לגוף מתכתי מספיק גדול, כמו למשל לארון המתכת בו מונחים המכשירים.

ישנם מעגלים אלקטרוניים שבהם יש נקודת אדמה וישנם כאלה שפועלים ללא חיבור לאדמה (צפים). ניתן להתייחס לכל שתי נקודות במעגל שמחוברות לאדמה כאילו הן מחוברות אחת לשניה. למיטב הבנתי זאת הסיבה ששם נוסף לחיבור אדמה הוא 'common ground' או בקיצור 'common' או אפילו 'com'.

ולסיום הערה מציקה: נהוג להגדיר זרם במעגלים חשמליים כזרם מטענים חיוביים מטעמי נוחות. במציאות, הזרם הוא תנועה של אלקטרונים, כלומר חלקיקים שליליים. חלקיקים אלה זורמים במעלה הר האנרגיה, לפי ההגדרות הקודמות שהצגתי, וכל התיאור הופך לפחות ברור. נניח לזה לעת עתה.

דיאטת קו המשווה – על משקל ותאוצה

מה אנשים רוצים?

אהבה? הגשמה? רווחה? אושר?

שטויות! מה שאנשים באמת רוצים זה לשקול פחות.

באחת הרשימות הקודמות סיפרתי על 'דיאטת נפילה'. עיקרה הוא שבמהלך נפילה חופשית, משקלו של אדם העומד על מאזניי קפיץ הוא אפס. הצונח אינו לוחץ כלל על המאזניים מכיוון ששניהם נופלים באותה תאוצה. זאת הסיבה, למשל, שהאסטרונאוטים בתחנת החלל מרחפים. המסה של הנופלים, אגב, לא משתנה, אבל למה להתרכז בשלילי.

הפעם אני רוצה לחזור לנושא ולספר על 'דיאטת קו המשווה'. כל שעל מפחית המשקל הפוטנציאלי לעשות הוא לעבור לגור באזור קרוב יותר לקו המשווה. ירידת המשקל היא מיידית ומובטחת! באחריות!

"כמה?", אתם שואלים. קודם בואו ונדון ב-'למה', ואח"כ נגיע לכמה. נראה גם את הקשר בין דיאטת הנפילה לדיאטת קו המשווה. שתיהן אינן בלתי קשורות אחת בשניה.

***

נקניק סלמי מונח על רצפת מעלית. מהם הכוחות שפועלים עליו?

מצד אחד, כוח הכבידה פועל עליו כלפי מטה. מצד שני הוא אינו נע. אם כך, ברור שהמשטח מפעיל עליו כוח שווה בגודלו והפוך בכיוונו לכוח הכבידה כלפי מעלה. סכום הכוחות הוא אפס. זהו בעצם החוק הראשון של ניוטון. (כל עוד סכום הכוחות על גוף הוא אפס, הגוף אינו משנה את מהירותו).

כלומר, הכוח שמפעיל המשטח על הסלמי שווה לכוח הכובד שפועל על הסלמי.

כאשר מניחים גוף על מאזניי קפיץ, מורים המאזניים את הכוח שמפעיל המשטח על הגוף. מכאן שאם הסלמי מונח על משקל קפיץ, היה מורה המשקל את כוח הכובד. על פני כדה"א ערכו של כוח הכובד קבוע ונתון על ידי מסת הסלמי כפול תאוצת הנפילה החופשית.

%d7%a1%d7%9c%d7%9e%d7%99-%d7%a2%d7%9c-%d7%9e%d7%a2%d7%9c%d7%99%d7%aa-%d7%a0%d7%97%d7%94
איור 1: נקניק סלמי מונח על מאזניים שמונחות על רצפת מעלית במנוחה.

מה קורה אם המעלית משנה את מהירותה, למשל מאיצה כלפי מטה?

אותם כוחות פועלים על הסלמי גם במקרה הזה, אבל לא יכול להיות שסכומם שווה לאפס כי מהירותו של הסלמי משתנה (ביחד עם המעלית). כאן נכנס לפעולה החוק השני של ניוטון שאומר שבמידה וסכום הכוחות על גוף אינו שווה לאפס, הוא שווה למסתו של הגוף כפול התאוצה שלו. החוק השני הוא חוק טבע וניתן להוכחה במעבדה.

אם כך, הפחתת הכוח שמפעיל המשטח על הגוף מכוח הכובד צריכה להסתכם בגודל ששווה למסתו של הגוף כפול תאוצת הנפילה החופשית. מהעברת אגפים במשוואה קל להסיק שבמקרה זה הכוח שמפעיל המשטח על הסלמי קטן יותר מאשר במקרה הקודם בדיוק בערך של התאוצה כפול מסת הסלמי, וזה גם מה שיימדד במאזניים. הסלמי ישקול פחות.

%d7%a1%d7%9c%d7%9e%d7%99-%d7%a2%d7%9c-%d7%9e%d7%a2%d7%9c%d7%99%d7%aa-%d7%9e%d7%90%d7%99%d7%a6%d7%94
איור 2: נקניק סלמי מונח על מאזניים שמונחות על רצפת מעלית שמאיצה כלפי מטה.

מה יקרה אם נחתוך את הכבל שמחזיק את המעלית והיא תחל ליפול בנפילה חופשית? גם הפעם יפחת המשקל במסה כפול תאוצה, אבל כעת התאוצה היא תאוצת הנפילה החופשית. מכאן שהמשקל במהלך נפילה הוא אפס. הסלמי לא מפעיל כלל כוח על המאזניים ולכן מצב נפילה הוא מצב של חוסר משקל. זאת היא בדיוק דיאטת הנפילה.

***

מכונית נוסעת במהירות קבועה במעגל תנועה.

שאלה: מה גורם למכונית לנוע במעגל? תשובה: כוח החיכוך.

איך אנחנו יודעים? אם נשפוך שמן על הכביש ונבטל את החיכוך של הצמיגים עם הכביש המכונית תמשיך לנוע ישר ותחליק החוצה מהמעגל. המכונית נעה במהירות שגודלה קבוע אבל כוח החיכוך מושך אותה כל הזמן לכיוון מרכז המעגל וגורם לה לנוע בתנועה מעגלית.

%d7%9e%d7%9b%d7%95%d7%a0%d7%99%d7%aa-%d7%91%d7%9b%d7%99%d7%9b%d7%a8
איור 3: מכונית נעה במעגל תנועה. כוח החיכוך מופנה לכיוון מרכז המעגל, והוא זה ששומר על המכונית במעגל.

החוק השני של ניוטון, כאמור, מלמד אותנו שסכום הכוחות על גוף שווה למסתו כפול תאוצתו. גם כוח וגם תאוצה הם וקטורים, כלומר גדלים עם כיוונים. לכן השוויון של חוק שני כולל בתוכו גם כיוון. אם כיוון כוח החיכוך הוא אל מרכז המעגל זה אומר שהמכונית מאיצה לכיוון מרכז המעגל. הסיבה שאינה נעה לכיוון מרכז המעגל היא שמהירות תנועתה היא בכיוון משיק למעגל והיא בדיוק כזאת שגורמת לה 'לפספס' את המרכז ולהמשיך לנוע לאורכו של המעגל.

תאוצת המכונית לכיוון מרכז המעגל בזמן תנועתה המעגלית נקראת בעגה 'תאוצה צנטרפיטלית'.

***

שתי פיסות סלמי זהות, האחת מונחת על קו המשווה והשניה על קודקודו של הקוטב הצפוני.

הפיסה המשוונית מבצעת תנועה מעגלית שרדיוסה כרדיוסו של כדור הארץ וזמן המחזור שלה הוא 24 שעות. פיסת הקוטב אינה מבצעת תנועה מעגלית כי ציר הסיבוב של כדה"א עובר בקוטב.

אם כך, פיסת הקוטב אינה מאיצה ובכך שקולה לפיסת סלמי המונחת על רצפת מעלית נחה. קריאת המאזניים שווה למסתה של הפיסה כפול תאוצת הכובד.

הפיסה המשוונית, לעומת זאת, מאיצה כלפי מרכז כדה"א, עקב תנועתה המעגלית, ולכן שקולה לפיסת סלמי המונחת על רצפת מעלית שמאיצה כלפי מטה. מכאן שמשקלה קטן ממשקלה של פיסת הקוטב. ההבדל במשקל שווה למסתה של פיסת הסלמי כפול התאוצה הצנטרפיטלית.

%d7%a1%d7%9c%d7%9e%d7%99-%d7%a2%d7%9c-%d7%a7%d7%95%d7%98%d7%91-%d7%95%d7%a7%d7%95-%d7%9e%d7%a9%d7%95%d7%95%d7%94
איור 4: שני נקניקי סלמי, אחד על הקוטב הצפוני ואחד על קו המשווה. משקלו של הסלמי המשווני קטן יותר בגלל שהוא נע בתאוצה שכוונה למרכז המעגל.

אם ניקח בחשבון את רדיוס כדה"א ואת זמן המחזור של סיבובו נגלה שההבדל במשקלן של שתי הפיסות הוא כ-0.3 אחוז.

[הערת שוליים: התאוצה הצנטרפיטלית נתונה על ידי aR=4π2•RE/T2, כאשר RE הוא רדיוס כדה"א ו-T הוא זמן המחזור]

ואם נחזור לענייני דיאטה, אדם ששוקל 70 ק"ג בקוטב הצפוני ישקול בקו המשווה בערך 69.75 ק"ג, וכל זאת ללא יום אחד של אכילת חסה או פעילות גופנית.

זכרו היכן שמעתם את זה לראשונה!