ארכיון

Posts Tagged ‘ננו-אלקטרוניקה’

למטה-למעלה-למעלה-למטה ומה שביניהם, על שתי גישות לתכנון ובניה של רכיבים ננומטריים

חלומות באספמיה

אז בדיוק רכשתם פיסת אדמה, ואתם רוצים להקים עליה בית. כיצד תעשו זאת? לפחות ברמה האבסטרקטית כל מה שנדרש הוא לערום לבנים – שורה אחר שורה, קיר אחרי קיר, חדר אחרי חדר וקומה אחר קומה. כמו לשחק בלגו. כך רובנו מדמיינים בניית בית. אך ישנה גם שיטה הפוכה מבחינה קונספטואלית. במקום לבנות את הבית, פיסה אחר פיסה ניתן לחצוב אותו מחתיכה שלמה של חומר גלם, כמו מיכלאנג'לו החושף את דוד מתוך גוש שיש. אמנם איני מכיר אף אחד המתכנן לחצוב את ביתו בסלע בזמן הקרוב, אך ישנן כמה דוגמאות מרהיבות מימי קדם (ראו תמונה 1).

Al_Khazneh

תמונה 1: מקדש האוצר בפטרה. המקור לתמונה: ויקיפדיה, לשם הועלתה על ידי המשתמש Bernard Gagnon.

שתי אסטרטגיות הבניה (או העיצוב) שהזכרתי נקראות בלעז 'Bottom up' (לגו) ו-'Top down' (מיכלאנג'לו). הראשונה עוסקת בבניה על ידי הוספה של חומרים והשניה עוסקת בבניה על ידי הורדה של חומרים. אף על פי שבתחום הבניה העירונית המודרנית רק אחת מהן באה לידי ביטוי, בתחום הננוטכנולוגיה יש לשתיהן חשיבות רבה.

להקטין, להקטין, להקטין!

אוהבים מחשבים מהירים וזולים? גם אני! שם המשחק הוא טרנזיסטורים קטנים. הטרנזיסטורים הם וסתי זרם חשמלי שבאמצעותם בונים את המעגלים הלוגיים המרכיבים למשל את המעבד של המחשב. הקטנת הטרנזיסטורים מובילה להגדלת מספרם במעבד ולשיפור פעולתו. מנגד, היא מובילה גם לקושי הולך וגובר לייצר את הרכיבים האלה. כיום טרנזיסטור במעבד הוא מסדר גודל של כמה עשרות ננומטרים (קטן פי אלף ויותר מקוטר שערה).

ננו-חוט, או בלעז nanowire, הוא אחד הרכיבים המסקרנים בתחום הננו-אלקטרוניקה. מדובר בחוטים, לרוב מסיליקון, באורך כמה עשרות מיקרונים וברוחב כמה עשרות ננומטרים (ראו תמונה 2). אל החוטים ניתן לחבר מגעים חשמליים ולייצר מהם רכיבי אלקטרוניקה ננומטריים. לחוטים אלה תכונות הולכת-חשמל מעניינות, גודל קטן, ויחס גדול בין שטח הפנים לנפח. מסיבות אלה ישנה התעניינות רבה בשנים האחרונות בננו-חוטים כרכיבים חשמליים, כטרנזיסטורים, כחיישנים ועוד.

CVD_Growth_of_Si_naowires_with_Au_catalysts

תמונה 2: ננו-חוטי סיליקון שגודלו תוך שימוש בחלקיקי זהב וצולמו בעזרת מיקרוסקופ אלקטרוני. המקור לתמונה: ויקיפדיה.

אבל איך בכלל אפשר לייצר מבנים כל כך קטנים בדיוק כל כך גבוה? אז מסתבר שאפשר לגדל אותם על הסיליקון ואפשר גם לחצוב אותם מתוכו. נשמע לכם מוכר?

חשיפה ופיתוח בחדר הנקיtop down

כיצד מדפיסים על חתיכת סיליקון מספר אסטרונומי של טרנזיסטורים בדיוק רב כל כך ובגודל קטן כל כך? התשובה טמונה בטכניקה שנקראת 'פוטוליטוגרפיה', וכפי ששמה מרמז היא קשורה להדפסה בעזרת אור, כלומר צילום (סרטון קצר). התהליך מתבצע ב-'חדרים נקיים' שבהם כמות החלקיקים באוויר נמוכה מאוד. כל חלקיק מזהם שינחת על הסיליקון בזמן התהליך ישבית חלק גדול מהפרוסה ויגרום לנזק כלכלי רב.

אז איך זה עובד?

נניח שיש בידינו פיסת סיליקון (צהוב באיור 3, a) שמכוסה בשכבת תחמוצת (אפור), ואנחנו מעוניינים לחפור בשכבת התחמוצת תעלה מלבנית במימדים ננומטרים וברמת דיוק גבוהה. ראשית נכסה את התחמוצת בשכבה אחידה של חומר רגיש לאור שמכונה photoresist והוא סוג של חומר צילום (b). כעת נצמיד אליו מסכה שהכנו מראש ותפקידה לחסום את האור באזורים מסוימים (c). נקרין את הדגם באור UV דרך המסכה כך שרק חלק מהדגם חשוף לאור (d). הבחירה להקרין באור UV נובעת מכך שככל שאורך הגל קצר יותר כך נוכל להדפיס ברזולוציה גבוהה יותר (גבול הדיפרקציה).

Photolitography
איור סכמטי 3: שלבים בתהליך הפוטוליטוגרפיה. המקור לתמונה: ויקיפדיה, לשם הועלתה על ידי המשתמש Cmglee.

האזורים בחומר הצילום שנחשפו לאור עוברים שינוי כימי וניתנים להסרה בעזרת ממסים כמו אצטון (לחלופין, אלה שלא נחשפו, תלוי ברזיסט). כעת שכבת התחמוצת חשופה באזור בצורת המלבן שאותו רצינו להסיר (e). ניתן לחפור אותו החוצה מבלי לפגוע במקומות אחרים (f), ואז להסיר את שאריות חומר הפיתוח (g). נשארו עם סיליקון שעליו שכבת תחמוצת עם חור מלבני.

באמצעות טכניקת הפוטוליטוגרפיה ניתן לעצב בליטות מלבניות מדויקות ברוחב ננומטרי על גבי פיסות סיליקון ולחבר אליהן מגעי מתכת בקצוות כך שניתן להתייחס למבנים שיתקבלו כננו-חוטים, לפחות מההיבט חשמלי.

זרעים של זהב – bottom up

תארו לעצמכם שהיה ניתן לזרוע חתיכות זהב קטנות באדמה ולראות אותן נובטות וגדלות לעצים המניבים פירות השווים את משקלם בזהב. שיטה לגידול ננו-חוטים הנקראת  Vapor–liquid–solid  (ובקיצור VLS) אינה רחוקה מזה.

בשיטה זאת זורעים חתיכות ננומטריות של זהב על פני משטח סיליקון, וחושפים את המשטח לגזים מסוימים (ראו איור 4). הגזים מייצרים ריאקציה כימית שבעקבותיה מתרחש מעבר של אטומי סיליקון מהפאזה הגזית אל תוך חלקיקי הזהב. כאשר חלקיק הזהב רוויים באטומי סיליקון הם מתחילים לשקוע בתחתיתו ומתמצקים (סרטון קצרצר). חתיכות הזהב קובעות את כיוון הגדילה ואת רוחב הננו-חוט שגדל. בסוף התהליך נוכל 'לקצור' מספר רב של ננו-חוטים, להניח אותם במקום אחר ולחבר אליהם מגעים חשמליים.

555px-Au-Si_Droplet_Catalyzing_Whisker_Growth

איור סכמטי 4: ננו-חוטי סיליקון הגדלים תחת חלקיק הזהב בשיטת VLS. המקור לתמונה: ויקיפדיה.

ראש בראש – מוזיקת יציאה

למרות שהגידול של ננו-חוטים בשיטת VLS אינו פשוט לביצוע, רוב המחקרים (לפחות אלה שאני נתקלתי בהם) מתבצעים על הסוג הזה. במחקר בסיסי החיסרון העיקרי של השיטה אינו בא לידי ביטוי, והוא הקושי למקם את החוטים לפי סידור רצוי. כאן נכנסים היתרונות הברורים של שיטת הליטוגרפיה, שהרי היא השיטה בה משתמשים בתעשיית המוליכים למחצה על מנת לייצר מעגלים בהזמנה.

כל עוד מדובר במחקר בסיסי, נוכל להמשיך ולהשתמש ב-bottom up, אבל אם ברצוננו לפתח רכיב לייצור המוני, נהיה חייבים לפתח אותו ב-top down.

ומה לגבי בניית הבית? עזבו אותי, אני הולך לשחק בלגו!

אז מה עושים שם באוניברסיטה? פרק 8: מולקולה אחת, זה כל מה שצריך – על ננו-אלקטרוניקה

נפגשתי עם רני אריאלי כדי לשאול אותו מה עושים שם באוניברסיטה.

רני הוא דוקטורנט לכימיה-פיזיקלית באוניברסיטת תל-אביב ועובד במעבדה לננו-אלקטרוניקה של דר' יורם זלצר. את התארים הקודמים הוא עשה בתחום הפיזיקה באוניברסיטת תל-אביב גם כן. רני חובב מוזיקה ובזמנו הפנוי נהנה לנגן על גיטרה.

רני, אז מה אתם עושים שם?

אצלנו במעבדה לננו-אלקטרוניקה אנו מעוניינים לפתח רכיבים חשמליים עתידניים שגודל האלמנט הקטן בהם יהיה מסדר גודל ננומטרי (ננומטר=10-9 מטרים, לשם השוואה קוטר שערה הוא מסדר גודל של כמה עשרות מיקרומטר, מיקרומטר=10-6 מטרים).

תמונה 1: שערת אדם בהגדלה פי 200. המקור: ויקיפדיה.

תוכל לתת דוגמא?

כן, ודאי. דמיין לדוגמא חוט זהב שמשמש להולכת חשמל. ניתן למתוח את החוט עד למצב שבו במקום מסוים, רגע לפני יצירת קרע או נתק, נוצרת שרשרת של אטומים בודדים. זה סוג פשוט של התקן חשמלי בסדר גודל ננומטרי. היתרון בהתקן כזה הוא שההולכה החשמלית שבו היא 'בליסטית', כלומר האלקטרונים עוברים בו ללא התנגשויות באטומים ולכן בקצבים מהירים יותר. דבר זה עלול להוביל להתקנים חשמליים מעניינים יותר. אבל זה ממש לא נגמר כאן.

אנחנו יכולים לקשור באמצע השרשרת, בין אטומי הזהב, מולקולה אורגנית שהיא מולקולה הבנויה בעיקר מאטומי פחמן ומימן. לכל מולקולה כזאת ישנן תכונות אלקטרוניות שונות, למשל סידור שונה של ערכי האנרגיה שהאלקטרונים במולקולה יכולים לקבל או מיקום שונה שלהם במרחב. לכן המולקולה תשפיע בצורה שונה על אופיין ההולכה של הרכיב החשמלי. לדוגמא, סוג המולקולה משפיע על הסיכוי של אלקטרון באנרגיה מסוימת לעבור דרכה ממגע זהב אחד לשני. כך שהמולקולה משפיעה על הקשר בין זרם למתח חשמלי ובעצם קובעת את אופי הרכיב.

מגוון המולקולות האורגניות הוא עצום ולכן נוכל לייצר מגוון רחב של התקנים בעלי מאפיינים שונים. למעשה, יש כאן פוטנציאל לרכיב מודולרי שאותו ניתן 'לתפור' לפי צרכי המשתמש.

איך אתם גורמים למולקולה אורגנית אחת להתיישב לה בין אטומי הזהב בשרשרת?

אחת השיטות, למשל, היא להתחיל משני מגעי זהב המחוברים אחת לשני בצורת פפיון ולהרחיק אותם בעדינות אחד מהשני (ראו תמונה 2). בשלב מסוים אזור החיבור הצר נמתח מספיק כך שמתקבלת שרשרת אטומי זהב. המשך זהיר של פעולת המתיחה יגרום לבסוף לקרע בשרשרת, כך שאטומי הזהב שניתקו עדיין קרובים אחד לשני. כעת אחת האפשריות היא להשתמש במולקולות אורגניות המכילות אלמנט כימי שנקרא תיול (thiol). אלמנט זה מורכב מאטום גופרית ואטום מימן, ונקשר בקלות לזהב. במידה והמולקולה מכילה שני תיולים היא תוכל להיקשר לשני אטומי זהב ולהשלים את השרשרת המנותקת. כל מה שאנו צריכים לעשות הוא לטפטף על הצמתים תמיסה עם המולקולות המתאימות בתנאים הנכונים ואת שאר העבודה הן עושות לבד.


תמונה 2: איור סכמטי של תהליך יצירת ההתקן: א) מושכים את שני צידי פפיון הזהב, ב) המתיחה יוצרת שרשרת אטומים בין המגעים, ג) ממשיכים למשוך עד ליצירת נתק, ד) קושרים מולקולה אורגנית המחברת את שתי קצוות השרשרת, ה)הגדלה של המסגרת האדומה.

אז מה אתה עושה עם השרשראות האלה?

אני אתן לך דוגמא, באחד הפרויקטים במעבדה הקרנו אור לייזר על מגעי הזהב של אחד ההתקנים האלה (ראו תמונה 3א'). מה שראינו הוא שהקשר בין המתח לזרם החשמלי של ההתקן, כלומר האופיין שלו, השתנה בעקבות הפעלת הלייזר. לאחר מכן חזרנו על הניסוי עם מולקולות אורגניות, דמויות שרשרת, באורכים שונים והראנו שככל שהמולקולה ארוכה יותר, כך ההשפעה של הלייזר קטנה יותר.

מה הקשר בין כל הדברים האלה?

ישנם שני סוגים של אינטראקציה בין אור ושדה אלקטרומגנטי (שא"מ): תהליך פיזור שבו אלקטרון בולע פוטון ועולה לרמת אנרגיה גבוהה יותר, ותהליך שבו השא"מ משנה את הפוטנציאל החשמלי של מערכת האלקטרונים. שני התהליכים מובילים לעליה אפקטיבית באנרגית האלקטרונים כך שכעת הם יכולים לדלג ביתר קלות מעל מכשולים טורדניים, כגון מולקולה אורגנית, שמפריעים להם להגיע לאלקטרודת הזהב השניה. באלקטרודה השניה ישנם המון מצבי אנרגיה פנויים לאלקטרונים, בדיוק מה שאלקטרונים אוהבים. אבל זה רק חלק מהסיפור.

אחת התכונות החשובות של מתכות היא שהן מוצפות בים של אלקטרונים שאינם קשורים לאטומים שלהם ורק מחפשים הזדמנות להשתתף בהולכה חשמלית. כאשר מקרינים אור על מתכת, חלקו נבלע וחלקו מוחזר (כתלות באורך הגל ובמקדם הדיאלקטרי שהוא מידת ההשפעה של שדה חשמלי על החומר). עם זאת, עבור כל מתכת קיים תחום אורכי גל שבו האור לא בדיוק נבלע ולא בדיוק מוחזר, אלא גורם למשהו מיוחד.

כאשר אנו מקרינים את הלייזר באורך הגל הזה על הזהב, האלקטרונים החופשיים הרבים הנמצאים על פני השטח מתחילים לנוע בהשפעת השא"מ. תנועתם של האלקטרונים היא מחזורית ויוצרת תנודות בצפיפותם וכך גורמות לתנודות במטען החשמלי (פלזמונים).


תמונה 3: איור סכמטי המראה את הארת הלייזר שגורמת לתנודות מטען על גבי האלקטרודה. תנודות המטען משרות תנודות הפוכות באלקטרודה השניה. כך שלמשל באופן רגעי נוכל למצוא מימין עליה בריכוז המטען החיובי ומשמאל עליה בריכוז המטען השלילי.

מה התרומה של תנודות האלקטרונים לתהליך?

התנודות במטען מתפשטות על כל האלקטרודה כמו גלי ים, ובצורה זו ניתן לייצר ביתר קלות התקנים שבהם האזור המעניין אינו חשוף להארה ועדיין להיות מסוגלים להשפיע ע"י הארה. כמו כן, כאשר גלי המטען מתפשטים לעבר קצה האלקטרודה, השדה החשמלי משרה מטענים הפוכים בקצה של האלקטרודה השניה (ראו תמונה 3ב'). דבר זה מגביר את השדה האופטי המקורי ומקל עוד יותר על האלקטרונים לעבור לאלקטרודה השניה דרך המולקולה האורגנית. כל זאת ללא הפעלת מתח חיצוני נוסף, כך שאנחנו מרוויחים פעמיים על הלייזר.

ומה לגבי המולקולות בניסוי זה?

השתמשנו בניסויי במולקולות בעלות תכונות אלקטרוניות זהות אך באורכים שונים. כלומר בניסוי תפקידן של המולקולות היה לקבע את המרחק בין שתי האלקטרודות. מה שראינו הוא שככל שהמולקולות ארוכות יותר, כך הזרם שקיבלנו היה חלש יותר.

את התוצאה הזאת ניתן להסביר באופן ישיר על ידי ההשפעה של תנודות המטען. ככל שהאלקטרודות היו רחוקות אחת מהשניה, כך תנודות המטען בקצה אלקטרודה אחת השפיעו פחות על קצה האלקטרודה השניה. כלומר הגברת השדה החשמלי היתה קטנה יותר ולאלקטרון היה קשה יותר לעבור את המחסום ביחס למקרה שבו אורך המולקולה היה קצר יותר.

אז מה היה לנו? תוכל לסכם?

כיום ישנו מצב של חוסר ודאות בקהילה המדעית באשר לכמות ההגברה שמתרחשת עקב היווצרות פלזמונים. מצב זה נוצר עקב השימוש של כל קבוצת מחקר בהתקנים בעלי מימדים וקונפיגורציות מולקולריות שונים. בעזרת הניסוי הצלחנו לכמת את התופעה של ההגברה הפלזמונית עקב ההארה ולהציג עבורה ערכים כפונקציה של המרחק בין שתי האלקטרודות.

במחקר הראינו שאנו מסוגלים לדחוס אור לתוך מבנה ננומטרי המורכב מצומת מולקולארית, ועל ידי כך להשפיע על הולכת ההתקן. מכיוון שמחקרים קודמים הדגימו יכולת לשלוט על התקדמות הפלזמונים בזמן, ניתן להשתמש בשיטה זו גם על מנת לחקור את הדינמיקה של ההולכה החשמלית בזמנים קצרים מאוד. דינמיקה זו מושפעת משלל תופעות שיכולות להתרחש בהתקן עקב אינטראקציה של האלקטרונים עם תופעות אחרות בהתקן, למשל ויברציות. את נושא זה סימנו כמטרתנו הבאה!

————————————————————

אני אשמח להפגש ולשוחח עם כל תלמיד מחקר (אולי אתם?) שמוכן להשתתף ולספר לי קצת על מה הוא עושה (והכול במחיר של שיחה לא יותר מידי ארוכה). תוכלו ליצור איתי קשר דרך טופס יצירת קשר.

זה הזמן לספר לכולם מה אתם עושים, אולי הפעם הם גם יבינו :-)