ארכיון

Posts Tagged ‘מתמטיקה’

הדרך הלא נכונה לתכנן מסיבה מוצלחת – כמה מילים על אלגברה בוליאנית

ד'ארטאניאן עורך מסיבה ומזמין אליה את שלושת חבריו: אתוס, פורתוס ואראמיס. הוא לא בטוח מי משלושתם יוכל להגיע והצלחת המסיבה חשובה לו מאוד. הוא מסביר למשרתו: "מהיכרות ארוכת שנים עם חבריי וניסיוני הרב בעריכת מסיבות אני יודע שכדי שהמסיבה תתרומם מוכרחים להתקיים שני תנאים. האחד, או פורתוס או אראמיס חייבים להיות שם. השני, או אתוס או פורתוס חייבים להיות שם".

משרתו חושב מספר שניות ועונה: "אתה מתכוון בעצם שכדי שהמסיבה תרים את הגג או שפורתוס חייב להיות שם או שגם אתוס וגם אראמיס חייבים להיות שם?"

ד'ארטאניאן מהרהר בעניין ועונה: "כן, ודאי, זה הרי ברור מהגרסה הראשונה של חוק הדיסטריביוטיביות של האלגברה הבוליאנית".

המשרת מגרד בפדחתו, נאנח ועונה: "כן אדוני. שאני אגיש את היין?"

"כן, מוטב שכך". עונה ד'ארטאניאן.

Dartagnan-musketeers
ארבעת המוסקיטרים. איור מתוך מהדורה של 'שלושת המוסקיטרים' שפורסמה ב-1894. המקור: ויקיפדיה.

***

בואו ונדמיין עולם של אמירות שמיוצגות על ידי משתנים. לדוגמה:

האמירה "פורתוס יגיע למסיבה" תסומן על ידי המשתנה A.

אם פורתוס לא יגיע למסיבה האמירה שקרית וערכו של המשתנה A יסומן כ-'שקר', 'false' או פשוט במספר אפס. אם פורתוס אכן יגיע למסיבה האמירה נכונה ולכן ערכו של המשתנה A יסומן כ-'אמת', 'true' או פשוט במספר אחד.

כל משתנה בעולם המוזר הזה יכול לקבל אחד משני ערכים, אפס או אחד, בהתאם להיותו מייצג אמירה שמתקיימת או שאינה מתקיימת.

נסמן את האמירה "אתוס יגיע למסיבה" על ידי המשתנה B, ואת האמירה "אראמיס יגיע למסיבה" במשתנה C.

האם האמירה "המסיבה הצליחה" אמיתית או שקרית? האם נוכל לייצג אותה בעולמנו ולבדוק?

***

ישנן שתי פעולות בלבד שניתן לבצע בין משתנים בעולמנו החדש. האחת פעולת 'וגם' והשניה פעולת 'או'. לדוגמה: "או שפורתוס יגיע למסיבה או שאתוס יגיע למסיבה". האמירה האחרונה למעשה מייצגת פעולת 'או' בין המשתנים A ו-B. כדי שהאמירה המורכבת תהיה נכונה מספיק ש-A יהיה נכון או ש-B יהיה נכון.

בדומה האמירה "גם פורתוס וגם אתוס יגיעו למסיבה" מייצג פעולת 'וגם' בין המשתנים A ו-B. כדי שהאמירה המורכבת תהיה נכונה גם A צריך להיות נכון וגם B צריך להיות נכון.

נסמן את פעולת 'או' בסימן '+' (כמו חיבור במתמטיקה) ואת פעולת 'וגם' בסימן '·' (כמו כפל). כלומר שהרישום A·B משמעו "גם פורתוס וגם אתוס יגיעו למסיבה" והרישום A+B משמעו "או פורתוס או אתוס יגיעו למסיבה".

כעת נוכל לתרגם את אמירתו המורכבת של ד'ארטאניאן לגבי התנאים להצלחת המסיבה: "או פורתוס או אתוס יגיעו למסיבה" וגם "או אראמיס או פורתוס יגיעו למסיבה". נכתוב באמצעות המשתנים: (A+B)·(A+C).

לעומתו טוען המשרת: "או שפורתוס יגיע או שאראמיס וגם אתוס יגיעו". ובמשתנים: (A+(B·C.

האם שתי האמירות מתקיימות או שאינן מתקיימות תחת אותם תנאים? במילים אחרות האם מתקיים:

(A+B)·(A+C)= A+(B·C)

***

לפני שנענה על השאלה, האם הבחנתם שהגדרנו אלגברה מסוג חדש? יש משתנים, ערכים שהם יכולים לקבל והגדרה לפעולות האפשריות ביניהם. שמה של האלגברה היא 'אלגברה בוליאנית' על שמו של ג'ורג' בול, מתמטיקאי, פילוסוף ולוגיקן מהמאה ה-19 שהגה אותה לראשונה בספר שפרסם ב-1854. כמו כן, הוא הופיע בגוגל-דודל לא מזמן. כבוד!

נשים לב שתחת חוקי האלגברה הזאת כל פעולת 'וגם' עם אמירה שקרית תוצאתה אמירה שקרית, כי עבור תוצאת אמת חייבים ששתי האמירות יתקיימו ואחת כבר שקרית. כמו כן, כל פעולת 'או' עם אמירה נכונה תוצאתה אמירה נכונה, כי עבור תוצאת אמת מספיק שאחת תהיה נכונה ואחת כבר נכונה. ובכתב אלגברי:

A·0=0

A+1=1

חישבו לבד מדוע גם ההיגדים הבאים נכונים תמיד:

A·1=A

A+0=A

כעת אנחנו מוכנים לבדוק מדוע החוק שאותו כינה ד'ארטאניאן "חוק הדיסטריביוטיביות הראשון" נכון.

ניצור טבלה של כל התרחישים האפשריים עבור האמירות B, A ו-C. מספר האפשריות הוא 2 בחזקת מספר המשתנים:

Picture1

תרחיש 1 הוא שאף אחד משלושת החברים לא מגיע. תרחיש 8 הוא שכולם מגיעים וכך הלאה.

כעת נוסיף לטבלה טור חדש עבור B וגם C. נמלא אותה לפי החוקים שלמדנו שאותם נפעיל בין הטורים של B ו-C המסומנים בצהוב.

Picture2

נוסיף טור נוסף עבור A או (B וגם C). נעקוב אחרי הטורים הצהובים:

Picture3

נעשה את אותם רצף של פעולות כדי למצוא את הטור עבור (A+B)·(A+C):

Picture4

קיבלנו תשובות לשתי השאלות שלנו בו זמנית. קודם כל ניתן להבחין בקלות ששני הטורים המייצגים את האמרות של ד'ארטאניאן ומשרתו זהות מבחינה ערכים ולכן ברור שהן זהות מבחינה לוגית.

כמו כן, כעת אנחנו יודעים בדיוק באלו מקרים תצליח המסיבה ובאלו מקרים לא. תרחישים 4 עד 8 מייצגים חמש אפשריות להצלחת המסיבה. ארבע מתוכן הן אלה שבהן פורתוס מגיע למסיבה והחמישית היא זאת שבה למרות שפורתוס לא הגיע, אתוס ואראמיס הגיעו יחדיו.

***

אז למה זה טוב?

למיטב ידיעתי, ואני לא מומחה בנושא, אלגברה בוליאנית שימושית לשני דברים עיקריים: לוגיקה ואלקטרוניקה דיגיטלית.

בלוגיקה אני לא מבין כלום, אבל דעו כי אלקטרוניקה דיגיטלית חוללה מהפך בעולמינו, וכל מעגל שכזה מתחיל מתרגיל באלגברה בוליאנית שהרי אות דיגיטלי הוא או גבוה או נמוך, או אפס או אחד.

אדגים זאת מתישהו ברשימה נפרדת.

העולם דרך עיניהם של מהנדסי חשמל (מטריצות, פרק הסיום) – על ייצוג במרחב המצב

זהו. הגיע רגע האמת.

הרשימה הזאת היא למעשה הסיבה שבגינה התחלתי לכתוב על מטריצות.

הרשימה הבאה, כמו זאת שקדמה לה, עוסקת בטכניקה מתמטית ולכן דוברת מתמטיקה. הפעם התרתי כל רסן בעניין. ראו הוזהרתם!

זהירות מתמטיקה

***

ברשימה הקודמת הצגתי את בעיית האוסילטור ההרמוני, התנודה המחזורית הבסיסית, והראיתי כיצד ניתן לפרק את המשוואה שמתארת אותה, משוואה דיפרנציאלית מסדר שני, לשתי משוואות מסדר ראשון. את שתי המשוואות ניתן לארוז בתוך מטריצה ולתת למחשב לפתור. כלומר נוכל למצוא באמצעות המחשב את המקום ואת המהירות של הגוף בכל רגע.
[הערת שוליים: זאת לא הדרך היחידה, ואולי אפילו לא היעילה ביותר לפתור את הבעיה באמצעות מחשב, אבל זה פחות מעניין אותי כרגע מכיוון שאני אני חותר למקום אחר.]

בעיית האוסילטור ההרמוני יכולה לייצג תנודה של מטוטלת, תנודה של גוף מחובר לקפיץ, תנועה של נדנדה, מעגלי תהודה בחשמל ועוד.

בואו נתעכב לרגע על הנדנדה. ילדה יושבת על כיסא הנדנדה ובכל פעם שהיא מתקרבת לאבא הוא נותן לה דחיפה קלה. הפעולה הזאת של הדחיפה אינה מתוארת במשוואות שעסקתי בהן פעם קודמת. כל הכוחות שפעלו על הגוף היו כוחות שקשורים למשתנים הבסיסיים של המערכת (מקום ומהירות הגוף). דחיפותיו של האב מהוות מקור כוח חיצוני שמופעל על הגוף ואינו תלוי במערכת עצמה.

עבור בעיות אלה (בעגה: אוסילטור מאולץ) נקבל משוואה אחרת שיש בה איבר מסוג חדש שנקרא לו איבר מקור.

הנה המשוואה המקורית:

Picture1

L הוא המרחק של הגוף מנקודת שיווי משקל, L עם שתי נקודות מעליו מסמל נגזרת שניה בזמן של המרחק מנקודת שיווי משקל.

והנה המשוואה המעודכנת:

Picture2

F הכוח החיצוני המופעל על הגוף.

הפתרון, אם כך, יהיה תלוי גם בתכונות הבעיה המקורית (בעגה: הבעיה ההומוגנית) וגם בתכונות הכוח החיצוני.

אחד הדברים החדשים והמעניינים שמופיעים במערכות כאלה הוא תופעת התהודה. הפתרון של המערכת תלוי בתדירות הכוח המנדנד. אם האב מתאם את הרגעים שבהם הוא דוחף את הילדה לתדירות מאוד מסוימת, הגובה שתגיע אליו הילדה יגדל מאוד אפילו ללא הגברת כוח הדחיפה. כלומר, ישנם תדרי נדנוד שבהם המערכת, במובן מסוים, יוצאת מכלל שליטה. בתדרים נמוכים וגבוהים מתדרי התהודה פעולת הדחיפה משפיעה באופן מתון או אפילו מפריעה לתנועה. לעומת זאת, בתדר התהודה המערכת משתוללת והילדה עפה מהנדנדה, לא עלינו. ניתן לחשב את תדרי התהודה על ידי פתרון מתמטי של המערכת או לגלות אותם על ידי מדידה.

אבל,

ברשימה זאת אני לא רוצה לעסוק בפתרון המערכת הספציפית הזאת אלא דווקא בדרכים מיוחדות לייצג משפחה שלמה של בעיות דומות. מה שמקשר בין הבעיות הוא שהן מתארות מערכת שלתוכה מוזן אות כניסה (למשל הכוח החיצוני שמופעל על הגוף) ונמדד אות יציאה (למשל מיקום הגוף בכל רגע ביחס לנקודת שיווי משקל).

ככה מהנדסי חשמל רואים את העולם.

***

בואו ונניח שניתן לתאר את המערכת על ידי שתי המשוואות הבאות:

Picture3

x הוא וקטור משתני המצב, u המקור, כלומר הכוח החיצוני, x עם נקודה למעלה מסמל נגזרת אחת בזמן של וקטור משתני המצב. y מסמל את אות היציאה של המערכת, למשל באוסילטור את המרחק מנקודת שיווי המשקל בכל רגע. A,B,C,D הם קבועים שאינם תלויים בזמן (בעגה מערכת כזאת נקראת LTI, כלומר linear-time-invariant).

המשוואה העליונה מתארת את הפיזיקה של משתני המצב שבחרנו. למשל במקרה של אוסילטור הרמוני הראיתי בסוף הרשימה הקודמת שמשתני העזר שנבחרו היו המקום והמהירות של הגוף. זה לא מקרי שמשתני המצב הם נגזרות אחד של השני.

המשוואה התחתונה מגדירה את אות היציאה שהחלטנו למדוד.

כעת בואו ונראה כיצד ניתן לתרגם למשל את בעיית האוסילטור לתוך הפורמולציה הזאת.

נרשום שוב את המשוואה כולל איבר המקור:

Picture4

סימנתי את איבר המקור F באות u מטעמי נוחות והרגל.

משתני העזר שלי הם:

Picture5

לכן שתי המשוואות שמייצגות אותן הן:

Picture6

נסגור את שתי המשוואות בכתב מטריצי:

Picture7

נניח שאות היציאה שמעניין אותנו הוא מרחק הגוף מנקודת שיווי משקל בכל רגע. אם כך אנחנו מעוניינים רק באיבר הראשון בווקטור המצב. נתרגם לכתב מטריצי:

Picture8

ולכן המערכת מתוארת על ידי:

Picture9

כעת כל המידע על אופייה של המערכת גלום במקדמים שלה A,B,C,D שהם וקטורים ומטריצות. אני אנסה להסביר מדוע דרך דוגמה.

***

התמרת פורייה היא אופרציה מתמטית שמפרקת פונקציה לרכיבי התדר הבסיסיים שמרכיבים אותה. לדוגמה, צג האקולייזר במערכת הסטריאו שלכם מראה בכל רגע מה העוצמה של כל צליל שצריך לחבר כדי לקבל את המוזיקה שאתם שומעים. אם יש למשל הרבה בס אז עוצמת התדרים הנמוכים תהיה גבוהה. הסברתי בעבר על הנושא ברשימה על מוזיקה מרובעת.

אחת התכונות המוזרות של התמרת פורייה היא שאם מפעילים אותה על משתנה תחת נגזרת מקבלים את המשתנה ללא נגזרת כפול קבוע הקשור לתדר. כלומר ניתן להפעיל את ההתמרה על משוואה דיפרנציאלית, להפוך אותה לאלגברית, לפתור אותה בקלות, ואז לנסות להמיר חזרה לתחום הזמן (שזה לא ממש קל). כל עוד המשתנים תחת ההתמרה אנחנו נקרא להם הייצוג בתחום התדר, כי הפונקציות הופכות הרי לפירוק התדרים ולכן הן פונקציות של התדר ולא של הזמן.

בטיפול במערכות אלה נהוג להשתמש בהתמרה שנקראת 'התמרת לפלאס' במקום בהתמרת פורייה. קצרה היריעה מלעמוד על ההבדלים ביניהן, אבל לענייננו זה לא ישנה דבר.

נפעיל את התמרת לפלאס על הייצוג הכללי של מערכת המצב:

Picture10

נרשום את כל המשתנים באות גדולה כדי לסמן שהם כעת פונקציות של התדר ולא של הזמן. הקבוע s הוא הקבוע שיצא מהנגזרת והוא תלוי בתדר.

קיבלנו שתי משוואות אלגבריות, כאשר אנחנו זוכרים שהמקדמים A,B,C,D הם מטריצות. נבודד את X מתוך המשוואה הראשונה באמצעות אלגברה של מטריצות ונציב אותו במשוואה השניה:

Picture11

I היא מטריצת היחידה.

קיבלנו ביטוי בתחום התדר עבור מוצא המערכת Y בהינתן המקור U. אם נחלק ביניהם נקבל ביטוי שנקרא פונקצית התמסורת (transfer function) של המערכת, כלומר מה יוצא ביחס למה שנכנס, הכל כתלות בתדר הנדנוד.

בואו ונתרגם את התוצאה למקרה של אוסילטור הרמוני פשוט ללא חיכוך על ידי הצבת המקדמים הרלוונטיים שקיבלנו קודם:

Picture12

ניתן לראות שקיבלנו במכנה פולינום עבור המשתנה s. נזכר שזה בדיוק הפולינום האופייני של המערכת ששורשיו מכתיבים את התנהגות המערכת כפי שראינו ברשימה הקודמת. אלה נקראים הקטבים של המערכת והם קובעים את התנהגותה. קיבלנו אותם מתוך המטריצה A (בעגה: מצאנו את הערכים העצמיים שלה). למעשה מרגע שניסחנו את הייצוג, יכולנו לגלות חלק חשוב מהתנהגות המערכת מתוך ניתוח המטריצה עצמה, ללא פתרון מלא שלה. למשל, אם אחד מקטבי המערכת ממשי וחיובי אז הפתרון בזמן יהיה תלוי בפונקציה אקספוננציאלית מתפוצצת ולכן המערכת אינה יציבה בזמן.

ישנן עוד תכונות רבות וחשובות שניתן לראות ישירות מתוך הייצוג, ללא פתרון מלא בזמן. ברגע שיש לנו את המקדמים A,B,C,D המערכת הפיזיקלית חשופה בפנינו. חשופה גם לאפיון אך גם לשליטה. למשל את בעיית היציבות שהזכרתי ניתן לתקן על ידי חיבור משוב במערכת, כלומר חיבור אות היציאה לתוך הכניסה, שישנה את הקטבים של המערכת. כמה הגבר יש לקבוע עבור אות המשוב כדי לייצב את המערכת? קל לקבוע בחישוב מתוך הייצוג.

***

ייצוג בעיות פיזיקליות כמערכת של כניסות ויציאות הוא כלי חזק של תכנון ושליטה בידי המהנדס. הוא נקרא 'ייצוג במרחב המצב' (state space representation) והוא חלק חשוב מתוך תורת הבקרה. כל החישוב האמיתי נעשה על גבי המחשב, לתוכו אנחנו מזינים את המטריצות שמייצגות את המערכת, ומבצעים את האפיון והתכנון של המערכת באמצעות כלים ממוחשבים מתוחכמים שנכתבו למטרות אלה.

זהו.

מטריצה אובר-אנד-אאוט.

המטריצה מכה בשלישית – אוסילטור הרמוני ופתרון מש' דיפ' מסדר שני

הרשימה הבאה היא מיוחדת.

הרבה אקדחים ששתלתי ברשימות קודמות הולכים לירות כאן. היכונו.

המטרה: הרחבה משמעותית של מספר הבעיות הפיזיקליות שניתן לפתור באמצעות מחשב בעזרתה של ידידתנו הותיקה, המטריצה.

אזהרה: הרשימה מכילה מתמטיקה.


זהירות מתמטיקה איור 1: תמרור אזהרה!

***

סיכום הפרקים הקודמים.

שחקנית מספר אחד: מטריצה.

ברשימה קודמת הצגתי את המטריצה כמבנה סדור של מספרים שניתן להכריחו לקיים חוקי חשבון פשוטים. תכונה זאת גורמת למטריצה להיות כלי שאותו קל לתכנת לתוך המחשב. הדגמתי כיצד ניתן לפתור באמצעות מטריצה מערכת משוואות ליניאריות, ובכך מתאפשר לנו לתכנת בקלות את המחשב לפתור זאת עבורנו.

ברשימה אחרת הראיתי כיצד ניתן לפתור סוג מסוים של מעגלים חשמליים על ידי תרגום הזרמים במעגל למערכת משוואות ליניאריות. המשמעות היא שנוכל לתכנת את המחשב לפתור בקלות מעגלים חשמליים.

שחקן מספר שתיים: אוסילטור הרמוני.

ברשימה קודמת הראיתי שאם נחבר גוף לקפיץ ונסיט אותו מעט מנקודת שיווי המשקל, הוא ינוע סביב נקודת שיווי המשקל בתנועה מחזורית. בקצה המסלול הכוח שמפעיל הקפיץ על הגוף הוא מקסימלי ומהירות הגוף אפס ובנקודת שיווי המשקל המהירות מקסימלית והכוח על הגוף אפס.

גוף וקפיץ איור 2: גוף קשור בקפיץ אלסטי לקיר ונע ללא חיכוך הלוך ושוב סביב נקודת שיווי המשקל.

***

אציג כאן שוב את בעיית האוסילטור, אך הפעם בצורה מתמטית מדויקת יותר.

נתחיל מהחוק שני של ניוטון שאומר שהיחס בין הכוח שמופעל על גוף לבין שינוי מהירותו (תאוצה) שווה למסת הגוף. במילים אחרות:

Picture1

a היא התאוצה, F הכוח ו-m המסה.

התאוצה היא שינוי המהירות בזמן והמהירות היא שינוי המקום בזמן. אם כך, נוכל לכתוב את התאוצה כנגזרת שניה של מקום הגוף לפי הזמן (להסבר מפורט יותר על נגזרות ברשימה קודמת). במילים אחרות:

Picture2

x הוא המקום, שתי הנקודות מעל ה-x מסמלות נגזרת שניה לפי הזמן.

חוק הוק מצביע על כך שהיחס בין הכוח שמופעל על קפיץ בתחום האלסטי לבין התארכותו ממצב רפוי שווה לקבוע המצביע על קשיחותו של הקפיץ. במילים אחרות:

Picture3

x מיקום הגוף הקשור לקפיץ, F כוח ו-k קבוע הקפיץ. המינוס מסמן שזהו כוח מחזיר, תמיד לכיוון נקודת שיווי המשקל.

כעת נאחד את שתי המשוואות לכדי אחת ונקבל:

Picture4

זאת היא משוואה דיפרנציאלית מסדר שני (ע"ש נגזרת שניה). הנעלם במשוואה הוא לא מספר אלא פונקציה שהיא המקום של הגוף בכל רגע, x כפונקציה של t. אנחנו מחפשים פונקציה שאם נגזור אותה פעמיים לפי הזמן ונוסיף לה את עצמה כפול קבוע נקבל אפס ללא תלות בזמן. הפונקציה היחידה שתקיים קשר שכזה היא פונקצית האקספוננט מכיוון שהנגזרת שלה גם היא אקספוננט זהה למקור.

אם כך, ננחש שהפתרון הוא מהצורה:

Picture5

X מקום, t זמן, r קבוע כלשהו.

מכאן ש:

Picture6

נציב את הפתרון במשוואה ונקבל את הפולינום האופייני של המשוואה. נקבל שני פתרונות עבור r שמיצגים שני פתרונות אפשריים למשוואה.

Picture7

ה-i בסוף הפתרון הוא סימן לשורש של 1-. ניתן להוכיח שהפתרון של המשוואה הוא צירוף ליניארי של שני הפתרונות האפשריים. כלומר:

Picture8

A ו-B הם קבועים שתלויים בתנאי ההתחלה של הבעיה.

את הפתרון ניתן להציג בצורה המוכרת יותר (המרה לפי זהות אוילר):

Picture9

A ו-φ הם קבועים התלויים בתנאי ההתחלה של הבעיה. ω היא תדירות התנודה של האוסילטור.

Simple_harmonic_motion_animation אנימציה 3: פתרון האוסילטור ההרמוני הפשוט. הגוף מתרחק ומתקרב לנקודת שיווי המשקל לפי פונקצית סינוס מחזורית. המקור לאנימציה: ויקיפדיה, לשם הועלתה על ידי המשתמש Evil_saltine.

***

מה יקרה לתנועת האוסילטור אם נרצה להתחשב בחיכוך של הגוף עם המדיום בו הוא נמצא, למשל אוויר או מים? ככל שגוף נע מהר יותר באוויר או במים כך המדיום מתנגד לתנועה חזק יותר. נוכל לבטא קשר זה על ידי הוספת כוח נוסף לכוח הקפיץ שמתכונתי למהירות. נזכר גם שמהירות היא שינוי במקום ולכן נגזרת ראשונה של המקום.

כוח החיכוך נתון על ידי:

Picture91

F כוח החיכוך, v כוח, C קבוע פרופורציה.

אם כך המשוואה היא:

Picture92

(החלפתי זמנית סימנים כדי לחסוך בפיקסלים, כמו כן עידכנתי טעויות מינוריות בסימון 31.10.15)

כיצד יראה הפתרון?

נוכל לחשוב על שני מקרים. בראשון כוח החיכוך חלש (נקרא בעגה 'ריסון חלש') כך שנצפה לראות תנודות דועכות של האוסילטור בתדירות מעט שונה מהתנודות המקוריות, עד לעצירתו (ראו איור, קו ירוק). במקרה השני כוח החיכוך כל כך חזק עד שלא נראה אפילו תנודה אחת עד לעצירת הגוף (נקרא בעגה 'ריסון חזק', באיור קו תכלת).

Oscilator solution with damping איור 4: גרף המציג את הפתרון של משוואת האוסילטור ההרמוני, כלומר המיקום כפונקציה של הזמן. הקו הכחול הוא הפתרון ללא חיכוך. הקו הירוק הוא ריסון חלש והקו התכלת הוא ריסון חזק. המקור לאיור: ויקיפדיה, לשם הועלה על ידי המשתמש Nuno Nogueira.

נשתמש שוב בשיטת השורשים למציאת הפתרון במקרה של ריסון חלש. אציג כאן את הפתרון המתמטי ללא הסברים, אך שימו לב שאין אנו זקוקים לו בהמשך. ניתן לדלג ישירות לחלק הבא.

Picture93

למשל עבור ריסון חלש:

Picture94

ω תדירות התנודה של המערכת, A ו-φ קבועים תלויים בתנאי ההתחלה. הסינוס בביטוי דואג לתנודה והאקספוננט דואג לדעיכה בזמן של הפתרון עד לעצירה בנקודת שיווי המשקל.

***

ועכשיו לסיבה שלשמה נתכנסנו.

נזכר שהמטרה היא ללמוד כיצד לפתור בעיות מתמטיות, למשל כמו אוסילטור, באמצעות המחשב. במקום פתרון אנליטי מלא על הנייר נרצה לתת למחשב לחשב נומרית במקומנו היכן נמצא הגוף בכל רגע. ישנן לא מעט תוכנות שמסוגלות לפתור משוואות דיפרנציאליות בצורה כזאת, אך רובן לא מתאימות לפתרון משוואות מסדר שני.

נשתמש בטריק כדי 'לעבוד' על המחשב ולמכור לו משוואה מסדר שני כמשוואה מסדר ראשון. נעזר בידידתנו המטריצה.

ראשית נגדיר משתני עזר:

Picture14

מכאן ששתי המשוואות הבאות מתקיימות עבור הנגזרות בזמן של משתני העזר:

Picture15

המשוואה הראשונה פשוט מציינת את יחס הנגזרת בין שני משתני העזר כפי שהגדרנו אותם. המשוואה השניה היא תרגום של משוואת האוסילטור המרוסן במונחי משתני העזר.

כעת נוכל לרשום את שתי המשוואות יחדיו בצורת מטריצה:

Picture16

ובעצם מה שקיבלנו הוא משוואה דיפרנציאלית פשוטה מסדר ראשון עבור המשתנה Z. תוכנה (כמו למשל matlab או scilab) שיודעת להתמודד עם מטריצות ועם משוואות דיפרנציאליות מסדר ראשון תפתור את המשוואה ללא אגל בודד של זיעה על מצחה. בינתיים אנחנו ננוח רגל על רגל.

הפתרון של משתנה Z1 הוא מיקום הגוף בכל רגע והפתרון של Z2 הוא המהירות בכל רגע.

***

ראינו כיצד ניתן לפתור באמצעות המחשב את בעיית האוסילטור, כולל המקרה המרוסן, כאשר אנחנו עוברים להצגת הבעיה באמצעות מטריצות.

משוואת האוסלטור מתארת שורה ארוכה של בעיות מעניינות כמו מטוטלת, קפיץ ונדנדה, אך גם מעגלים חשמליים הנקראים מעגלי תהודה ומכילים קבלים נגדים וסלילים (הצגתי את הנושא ברשימה קודמת). כלומר, נוכל להשתמש בפורמולציה הזאת לפתרון של כל משוואה דיפרנציאלית מהסוג הזה, ולא רק אוסילטור.

די שימושי, לא? אבל זה רק קצה הקרחון. הפינאלה ברשימה הבאה.

אפילו שימפנזה – על פתרון מעגלים חשמליים באמצעות מטריצות

ברשימה הקודמת נתקלנו במושג 'מטריצה'. ראינו שניתן להציג מערכת משוואות ליניאריות באמצעות מטריצות ולהשתמש בתכונות המטריצה כדי למצוא את הפתרונות עבור הנעלמים. מה שלא ראינו זה איך זה עוזר לנו לשלם במכולת.

***

איור 1 הוא ייצוג סכמטי של מעגל חשמלי. ישנו מקור מתח חשמלי V, וחוטים מוליכים דרכם עובר זרם חשמלי I מהמקור לצרכן ומהצרכן למקור. הצרכן מסומן כנגד, שעליו מתקיים 'חוק אוהם', כלומר שיש יחס ישר בין המתח עליו לבין הזרם דרכו, וקבוע הפרופורציה הוא ההתנגדות החשמלית שמסומנת ב-R. הבחירה בצרכן כנגד אוהמי היא רק לשם פשטות. הצרכן יכול להיות כל מכשיר חשמלי או מעגל שתחברו לספק המתח, למשל טוסטר משולשים. את הזרם על הנגד נוכל לחשב על ידי הצבת מתח הספק וההתנגדות של הנגד לתוך חוק אוהם (I=V/R).

מעגל 1 איור 1: צרכן\נגד מחובר למקור מתח חשמלי וזרם חשמלי זורם במעגל. אם נניח נגד אוהמי נוכל להשתמש בחוק אוהם לחישוב הזרם.

חישבו על המעגל כעל מפל מים. בהדק החיובי של הספק יש מים במאגר גבוה, כלומר בחלק העליון של המפל. כוח הכובד גורם למים ליפול לגובה נמוך יותר ותוך כדי כך אנחנו יכולים להפיק מכך עבודה, למשל לסובב גלגל של תחנת קמח או טורבינה בתחנת כוח. אותו דבר קורה על הנגד שיכול להיות למשל סלילי החימום בטוסטר משולשים. נושאי המטען הגיעו לנגד באנרגיה פוטנציאלית גבוהה, ויצאו באנרגיה פוטנציאלית נמוכה, תוך יצירת חום. את המים בתחתית המפל ניתן לשאוב חזרה אל חלקו העליון. זה בדיוק מה שעושה ספק המתח מההדק השלילי לחיובי.

חשוב לשים לב שאם עוקבים אחרי מסלול סגור, גם במקרה של המים וגם במקרה החשמלי, ומחברים עליות וירידות באנרגיה צריכים לקבל סה"כ אפס מכיוון שהאנרגיה נשמרת (בעגה: כוח הכבידה והכוח החשמלי הם כוחות משמרים).

עד כאן הכל פשוט.

***

איור 2 הוא גם ייצוג סכמטי של מעגל חשמלי, אבל מאיים מעט יותר. השאלה כאן היא מהו הזרם על נגד R3. הבעיה היא שהפעם לא נוכל להשתמש בחוק אוהם כמו במעגל הקודם מכיוון שהנגד לא מחובר ישירות לספק המתח ולכן אין אנו יודעים מה המתח עליו ומה הזרם עליו. חלק מהמתח 'נפל' על נגד R1, ולכן המתח על R2 ו-R3 לא ידוע.

מעגל 2 איור 2: מעגל חשמלי עם שני חוגים. המתח על נגד R3 אינו ידוע ללא חישוב. I1 ו-I2 אינם הזרמים האמיתיים במעגל אלא זרמי החוגים שהם משתני עזר בדרך לפתרון הבעיה.

מי שלמד מעט אלקטרוניקה יודע שיש מספר שיטות פשוטות כדי לחשב את התשובה (לדוגמה חישוב התנגדות שקולה או שימוש בחוקי קירכהוף). הבעיה היא ששיטות אלה מסתבכות מאוד ככל שנסבך את המעגל וגם אינן מותאמות באופן מיטבי לפתרון באמצעות מחשב.

בכוונתי להציג שיטה אחרת שתראה בתחילה מסובכת הרבה יותר אבל ברגע שנבין אותה היא תהיה כל כך פשוטה, כך שאפילו שימפנזה יוכל לפתור כל מעגל, מסובך ככל שיהיה. חשוב מכך, השיטה לפעמים לא תהיה הכי נוחה לפתרון עבור אדם, אך היא מותאמת בצורה מושלמת לפתרון על ידי מחשב.

נזכר שבמסלול סגור סה"כ עליות ונפילות המתח צריכות להסתכם לאפס. נבחר שני מסלולים סגורים כאלה (מתוך שלושה אפשריים) ונכתוב עבור כל אחד משוואה (ראו איור 2). ספק המתח מעלה את המתח (מעלה את המים) ונגד מוריד אותו (מפיל את המים).

1

כעת נשתמש בסוג של טריק ונגדיר משתני עזר לבעיה. נגדיר זרם בכל חוג (I1 ו-I2 באיור 2). הזרמים האלה אינם אמיתיים כי הרי ברור שהזרם שונה בענפים שונים עקב פיצול בנקודת הצומת. אבל אנחנו נגדיר אותם כך בכל זאת.

נשתמש בחוק אוהם כדי להמיר את המתחים במשוואה לזרמים והתנגדויות. נשים לב שדרך נגד R2 עוברים שני הזרמים I1 ו-I2, ובכיוונים שונים ולכן ההשפעה של I2 על R2 היא של עליית מתח ולא נפילה.

2

נלוש מעט את המשוואות ונסדר אותן בצורה יותר נוחה:

3

הגענו לסט של שתי משוואות בשני נעלמים (הזרמים). ברשימה הקודמת ראינו איך לפתור את הבעיה בעזרת מטריצות. ראשית נרשום את המשוואות בצורה מטריצית:

4
*[הערת שוליים: מי שלא מתעניין במתמטיקה או בפתרון יכול לדלג בנקודה זאת ישירות לחלק הבא. היו סמוכים ובטוחים שהשיטה תניב פתרון נכון].*

נשתמש במטריצה ההופכית כדי למצוא את הפתרון:

5

R-1 היא המטריצה ההופכית של המטריצה R. ברשימה הקודמת הגדרנו מטריצה הופכית וראינו איך לחשב אותה. התשובה היא:

6

נשתמש בחוקי הכפל של מטריצות כדי להגיע לפתרון עבור הזרם שמעניין אותנו:

7

תם ונשלם. זרם החוג I2 הוא אולי לא זרם אמיתי אבל על R3 הוא בדיוק הזרם שאנחנו מחפשים. אם היינו מחפשים את הזרם על הנגד R2 היינו פשוט מחשבים לפי I1-I2.

***

אז מדוע הטרחתי אתכם עם הדרך הארוכה והמסובכת הזאת? אדגיש שוב שישנן דרכים פשוטות הרבה יותר לפתרון המעגל שמופיע באיור 2.

ברשותכם נחפור מעט לתוך המשוואה הראשונית בצורתה המטריצית. התבוננו במשוואה, האם אתם מבחינים בחוקיות כלשהי?

8

איברי האלכסון הראשי של מטריצה R הם סך כל ההתנגדויות על כל חוג. האיברים מחוץ לאלכסון הם ההתנגדויות המשותפות לשני החוגים בסימן מינוס (כל עוד זרמי החוגים בכיוונים הפוכים). כל איבר במטריצת המתחים הוא סך כל מקורות המתח בחוג הרלוונטי.

למעשה יכולנו לכתוב את המטריצה לפי החוקיות הזאת באופן אוטומטי ללא צורך בכתיבת משוואות. החוקיות נשמרת גם אם נזדקק למספר גדול יותר של חוגים ולמטריצות מסדר גבוה יותר.

שיטה זאת נקראת 'זרמי חוגים' (Mesh current) ובאמצעותה ניתן לפתור כל מעגל מהצורה שהצגתי כאן בלי לבצע שום ניתוח ולמעשה ללא צורך להפעיל את המוח, גם במקרה של מעגלים סבוכים שבהם מספר רב של נגדים ומקורות מתח. ניסחנו אלגוריתם שמוביל למטריצה ולחישוב שאותו מבצע המחשב. אנחנו יכולים לנוח!

כעת, בזמן שהמחשב מחשב עבורנו, יש לנו זמן ללכת לעבוד (אולי בתכנון מעגלים חשמליים), להרוויח מלא כסף, וללכת לקנות איתו במכולת.

מסקנה: עם מטריצות אפשר לקנות במכולת.

מ.ש.ל

שלום אני מטריצה, נעים להכיר – על מה ולמה, מבוא

המחשב הוא גולם.

ואם אנחנו רוצים שהגולם יעבוד עבורנו עלינו לתרגם את המידע לצורות שהוא מבין.

המחשב אוהב מספרים. ככל שנצליח לנסח את הבעיות שלנו באמצעות מספרים בלבד ובאמצעות מבנים שמוכרים כבר בתוך המכונה, כך הפתרון יהיה פשוט יותר.

***

נבחן בעיה פשוטה ומוכרת במתמטיקה: פתרון שתי משוואות בשני נעלמים.

01

הכוונה היא שיש לנו שני משתנים x ו-y ואנחנו דורשים שיקיימו את שני התנאים שמוצגים דרך שתי המשוואות. במקרה הנתון יש רק פתרון אחד עבור x ו-y שיקיים את התנאים והוא x=y=1.

כעת בואו ונסבך את העסק. זה ישתלם לנו בהמשך.

***

נגדיר מטריצה (באופן לא פורמלי) כמערך דו-ממדי של מספרים, המסודרים בשורות וטורים. לדוגמה, נוכל להגדיר את המטריצה A הבאה:

02

ממדיה של מטריצה A הם 2×2, כלומר שתי שורות על שני טורים. יכולתי לבחור כל זוג מספרים שלמים עבור הממדים, כלומר מספר הטורים והשורות לא חייב להיות זהה.

נוכל להגדיר פעולות חשבוניות בין מטריצות. הצורה בה נגדיר את הפעולות היא קונסיסטנטית, יש בה הגיון פנימי כלשהו והיא תשתלם לנו בהמשך.

חיבור: רק עבור מטריצות זהות ממדים, נחבר איברים במיקום זהה.

03

כפל: נכפול שורה מסוימת ממטריצה A בטור מסוים ממטריצה B, נחבר תוצאות ונמקם במטריצה חדשה לפי מספר השורה הכופלת ומספר הטור הכופל. כלומר האיבר במקום (2,1) הוא התוצאה של כפל שורה 2 בטור 1.

המחשת הכפל בציור (עקבו אחרי החצים לפי צבעים משמאל לימין):

כפל מטריצות

ובצורה פורמלית יותר:

04

ניתן לכפול מטריצות גם אם ממדיהם שונים, כל עוד מספר השורות של B זהה למספר הטורים של A. לדוגמה:

05

מהי המטריצה המקבילה למספר 1? נדרוש שכל פעולת כפל עם מטריצה זאת לא תשנה את האיבר השני בכפל, כלומר A היא מטריצת יחידה אם A•B=B•A=B עבור כל B. המטריצה שמקיימת תכונה זאת נראית כך:

06

אתם מוזמנים לבדוק.

כעת נוכל להגדיר מהי מטריצה הופכית, כלומר 1 חלקי מטריצה. נדרוש שתוצאת הכפל בין מטריצה להופכית שלה תהיה תמיד מטריצת היחידה I. כלומר:

07

קיבלנו 4 משוואות ב-4 נעלמים (אברי ה-b). ניתן להראות שהתוצאה היא:

08

אתם מוזמנים לבדוק.

את כל חוקי החשבון כתבתי לשם פשטות עבור מטריצות קטנות בעלות ממדים 2×2 , אבל ניתן להכליל את החוקים למטריצות בכל גודל שנרצה. זה מסבך מעט את העסק ולא נחוץ לי כרגע.

השאלה היותר חשובה היא למה טרחתי להראות את כל זה?!

***

זוכרים את מערכת המשוואות שהתחלנו ממנה?

09

שימו לב שנוכל לכתוב אותה באמצעות מטריצות בצורה הבאה:

10

נסמן את המטריצות באותיות A, V, ו-R כפי שרואים למעלה ונקבל משוואה פשוטה שבה אנחנו בעצם מחפשים פתרון עבור V. להתרת המשוואה נכפיל את שני האגפים במטריצה ההופכית של A ונקבל:

11

שימו לב שהשתמשתי בתכונות מטריצת היחידה I.

המסקנה מהתרגיל היא שכדי למצוא את הפתרון עבור V כל שעלינו לעשות הוא להכפיל את ההופכית של A במטריצה R.

12

אבל למה טרחתי להראות את כל זה?! זה נראה הרבה יותר מסובך מהשיטה שלמדנו בחטיבת הביניים.

שימו לב שאם הייתי בוחר מערכת של 10 משוואות ו-10 נעלמים לא הייתם מסוגלים לפתור אותה בפחות מ-10 שעות בשיטה 'הישנה'.

מטריצות הן מבנה סדור של מספרים והן מקיימות חוקי מתמטיקה ברורים וחדים בין אחת לשניה. לכן קל לתכנת לתוך המחשב את המבנה שלהן ואת חוקי האלגברה שהן מקיימות. קיימות תוכנות רבות שפונקציות אלה כבר כתובות בהן.

אם כך נוכל לפתור כל מערכת משוואות ליניארית על ידי הקשת נתוני המטריצות השונות שמייצגות את הבעיה לתוך המחשב, ולקבל את הפתרון באופן מידי ללא טיפת מחשבה וללא אגל זעה בודד על המצח. צוואר הבקבוק בחישוב הפתרון יהיה חישוב המטריצה ההופכית, אבל זה כבר בעיה של הגולם*. שיעבוד!

*[הערת שוליים: ובעיה גם של מי שצריך לתכנת אותו, אבל את זה צריך לעשות רק פעם אחת].

***

"אבל מה בכלל אכפת לנו מכל המשוואות האלה? עם n משוואות ב-n נעלמים לא קונים במכולת!"

אההה! במקרה הרשימה הבאה תעסוק בדיוק בזה. אמנם לא נקנה במכולת, אבל נעשה עם מטריצות משהו אפילו יותר מעניין.

:קטגוריותכללי תגיות: ,

גדי כבר היה שם, אבל מזווית מעט שונה – על פתרון משוואת הפרשים

נפתח הפעם בשאלה: מהו ערכו של האיבר ה-152 בסדרת פיבונצ'י?

***

סדרת פיבונצ'י היא סדרת מספרים שבה כל איבר הוא סכום של שני המספרים שקדמו לו. שני המספרים הראשונים בסדרה נקבעים כאפס ואחד ומשם אפשר להמשיך ולחבר את כל השאר.

0, 1, 1, 2, 3, 5, 8, 13…

כדי לבצע בסדרה 'טיפול שורש' נצמיד לכל איבר בה מספר סידורי המצביע על מקומו בטור. נסמן את המספר באות n, כפי שניתן לראות בטבלה הבאה:

1

אם האות a מסמלת איבר כלשהו בטור אז נוכל לרשום למשל :

2

וכך הלאה.

לפי רישום זה ניתן לכתוב את החוק שמגדיר את הסדרה בצורה הבאה:

3

כלומר, כל איבר בטור הוא סכום של שני האיברים שבאו לפניו.

וכעת חזרה שאלה: מהו ערכו של האיבר ה-152? כיצד תתמודדו עם שאלה זאת? האם יש צורך לחשב את כל המספרים בכל המקומות עד למקום הרצוי?

ניתן לכתוב תוכנת מחשב שתחשב את כל המספרים אבל ככל שאדרוש מספר גדול יותר כך יתארך ויסתבך החישוב. מי שעשה קורס בסיסי בתכנות ודאי יוסיף שאפשר ליעל את החישוב באופן משמעותי על ידי פתרון רקורסיבי. אבל ישנו פתרון קל הרבה יותר. (ראו תגובות) למעשה קיימת נוסחה סגורה עבור האיבר הכללי של סדרת פיבונצ'י.

4

קשה להאמין, אבל הנוסחה הזאת תמיד עובדת. אני ממליץ להציב כמה מספרים מהטבלה ולבדוק. כמו כן, קשה להאמין שעבור כל מספר שלם n הנוסחה מרובת השברים, החזקות והשורשים תניב תמיד מספר שלם.

מהיכן נולדה הנוסחה? האם היא קסם חד פעמי? האם מאחוריה עומד משהו כללי יותר?

***

[הערת שוליים: החלק הזה מכיל מעט מתמטיקה. למיטב הבנתי, כל מי שסיים תיכון יכול להבין מה כתוב אם הוא מעוניין בכך. ניתן כמובן גם לדלג לחלק הבא]

כדי לנסות ולהבין כיצד נולדה הנוסחה נחזור לקשר שמגדיר את כל הסדרה:

5

בואו ונניח שמישהו גילה לנו שהפתרון של המשוואה הוא מהצורה של שבר כלשהו בחזקת n:

6

נציב את הצורה הכללית הזאת במשוואה ונקבל:

7

כעת נחלק ב-rn את המשוואה ונקבל משוואה ריבועית פשוטה:

8

למשוואה הריבועית שני פתרונות (שורשים) שאותם נסמן ב- r1 ו-r2 (הציצו בנוסחה למעלה ושימו לב שאחד השורשים הוא יחס הזהב). ניתן להוכיח שבמקרה זה הפתרון של המשוואה המקורית שאותה רצינו לפתור הוא שילוב של שני השורשים בצורה הבאה:

9

כאשר A ו-B הם קבועים שאותם נמצא על ידי הצבת תנאי ההתחלה של הטור כלומר נדרוש A ו-B כך שיתקיים:

10

ונקבל את הפתרון הכללי לסדרת פיבונצ'י שצוטט בחלק הקודם.

שימו לב שיכולנו לבחור תנאי התחלה שונים ולקבל פתרון שונה, אך לא באופן מהותי. השינוי היה רק בקבועים A ו-B.

ניתן לחשב ערכים של סדרת פיבונצ'י גם עבור n-ים שליליים, כלומר הסדרה גם הולכת אחורה. זה כמובן לא מפתיע מכיוון שאברי הטור האלה עדיין יקיימו את החוק הבסיסי של חיבור האיברים ואת הדרישה על תנאי ההתחלה.

***

הפתרון שקיבלנו אינו מקרי. המשוואה המקורית מכונה בעגה 'משוואת הפרשים' וצורת הפתרון שהוצגה היא צורה כללית שעובדת עבור כל משוואה מהסוג הזה (תחת מגבלות כאלה ואחרות).

קוראים מנוסים במתמטיקה אולי זיהו שדרך הפתרון זהה לפתרון משוואות דיפרנציאליות מסוימות. ניחוש פתרון, פולינום אופייני וכולי. למעשה משוואות הפרשים במרחב בדיד (דיסקרטי, ההפך מרציף) הן שקולות למשוואות דיפרנציאליות במרחב רציף. ההשהיה בזמן שקולה לנגזרת.

למה זה טוב?

נניח שאני מנהל דוכן לימונדה. בכל יום בבוקר אני צריך להחליט מראש כמה לימונים לקנות וכמה כוסות להכין. אחת הדרכים להתמודד עם האתגר היא לבסס את ההחלטה שלי בכל בוקר על סמך ממוצע המכירות של הימים האחרונים, מזג האוויר באותו היום וכמות המזומנים שבידי. נוכל לכתוב משוואת הפרשים (מסובכת הרבה יותר מזו של פיבונצ'י) שתתאר את תהליך קבלת ההחלטה.

המשוואה תתאר בעצם את פעולתו של בקר ממוחשב שצריך לקבל החלטות בכל סיבוב פעולה על סמך אותות כניסה (למשל מספר מזומנים) ועל סמך אותות יציאה קודמים (למשל מספרי מכירות קודמים). בעזרת ניסוח המשוואה המתארת אותו ניתן לחקור את פעולתו ולתכנן אותו באופן מיטבי בהתאם לדרישות על ביצועיו. ישנו תחום שלם בהנדסת חשמל שמסתמך על המתמטיקה הזאת והוא שייך לתורת הבקרה.

משוואות הפרשים (וגם משוואות דיפרנציאליות) יכולות לשמש אותנו גם ביצירת מודלים של ריבוי אוכלוסיות, למשל בגידול חיידקים וכדומה.

בגלל שמשוואות הפרשים כל כך שימושיות עבורנו ניתן לקרוא עליהן עוד בספרים העוסקים במתמטיקה שימושית, או בתורת הבקרה.

ניתן גם לקרא תיאור מתמטי מפורט יותר ופורמלי הרבה יותר בבלוג 'לא מדויק'. ד"ש לגדי.

מתמטיקה בתמונות

והפעם ללא מילים. כמעט.

***

half sum

מתקשים?

התבוננו באיור הבא, הניחו ששטח הריבוע הוא 1 ועקבו אחרי החלקים הצבועים.

Picture1

יש?

***

עוד אחד.

Quarter sum

 

רמז 1:

Picture2

רמז 2:

Picture3

יש?

***

אחד אחרון.

Pi sum

כל נקודה באיור הבא מייצגת סכום מצטבר עד איבר כלשהו בטור. חיברתי כל שתי נקודות עוקבות על ידי חצי מעגל. פעם למעלה ופעם למטה, לפי הסדר.

ספירלת לייבניץ לחישוב פאי

אתם יכולים לנחש כעת מה הסכום?

הציצו בשתי תצוגות מוצלחות יותר כאן וכאן, משם לקחתי את הרעיון, ושם יש גם קישור לפתרון.

***

החישוב החזותי של הטור מראה לנו את הפתרון וגם את ההיגיון שעומד מאחוריו. הוא גם מראה לנו את מהירות ההתכנסות של הטור.

מסתבר שבמתמטיקה יש קטע שלם של הוכחות ללא מילים בעיקר בנושא גיאומטריה אויקלידית. אם אתם חובבי הז'אנר שווה לכם לקרוא על כך בקישור הזה.

וזהו. הבטחתי כמעט ללא מילים.

***

רוב המידע ברשימה הגיע אלי מדר' ערן גרינוולד, חוקר בתחום האופטיקה במכון ויצמן ומורה לפיזיקה במרכז שוורץ-רייסמן רחובות.

:קטגוריותכללי תגיות: ,