ארכיון

Posts Tagged ‘טכנולוגיה’

ניצוצות לגבות, רסיסים לריסים – על למה לא כדאי להכניס מתכות למיקרוגל

לפני מספר חודשים נשאלתי מדוע אסור להכניס מתכות לתנור המיקרוגל. עניתי בביטחון "זה ברור, כי המתכת תגרום לניצוצות ולהתלקחות. כולנו ראינו את הסרטונים ביוטיוב". "אבל למה המתכת גורמת לכל זה?". עניתי בביטחון "אהמהמהממה…". תוך כדי שעניתי, הבנתי שאני לא יודע את התשובה ברמה שמאפשרת להסביר לאדם אחר. עד אותו רגע חייתי את חיי כאדם שמשוכנע שהוא יודע את התשובה, ואז פתאום לא. עצרתי ואמרתי שאבדוק בהמשך.

ההמשך זה עכשיו.

להפתעתי גיליתי שזה לא בדיוק נכון שאסור להכניס מתכת למיקרוגל, אם כי, כפי שתבינו בהמשך, אני אכן לעולם לא אעשה זאת ואני מציע גם לכם להימנע מכך.

אז הנה מה שאני הבנתי מכל העניין.

תמונה 1: תנור מיקרוגל למטבח. המקור לתמונה: ויקיפדיה, לשם הועלתה על ידי המשתמש 吉恩 שזה ז'אן לפי גוגל-טרנסלייט.

***

תנור המיקרוגל הוא קופסת מתכת שלתוכה מוזנים גלים אלקטרומגנטיים בתדר גבוה. הגלים מוחזרים הלוך ושוב מהקירות המוליכים ופוגעים ונבלעים באוכל שמונח בפנים. הגלים גורמים למולקולות מקוטבות חשמלית (כמו מים, שומנים וסוכרים) להסתובב בכיוון השדה, ולכן הלוך ושוב, וכך גורמים לחימומו של האוכל. נזכיר, מבלי להיכנס לפרטים מדויקים, שככל שמולקולות רוטטות יותר טמפרטורת החומר גבוהה יותר.

במכשירים הביתיים הגלים האלקטרומגנטיים המוזנים לחלל החימום מתנודדים בתדירות של כ-2.5 ג'יגה-הרץ, כלומר מסיימים מחזור תנודה 2.5 מיליארד פעמים בשניה (בין גלי רדיו לאינפרה-אדום). אורך הגל הוא כ-12 סנטימטר, מסדר הגודל של ממדי חלל החימום. המקור שמייצר את הגלים נקרא 'מגנטרון', והוא רכיב מתוחכם ומורכב שלהבנת עקרון פעולתו נדרשת רשימה נפרדת. למעוניינים, אפשר להתחיל מהסרטון הקצר הזה.

עוצמת הגלים בתוך המיקרוגל אינה שווה בכל מקום בחלל החימום. אם אין אוכל שסופג את הגלים, ייווצר בתוך החלל, עקב חיבור הגלים הבאים והולכים, גל עומד. הכוונה היא שבכל נקודה גודל התנודה המקסימלי של הגל תהיה קבועה (גדולה או קטנה, תלוי במיקום), בניגוד לגל נע שבו גודל התנודה נע במרחב עם תנועת הגל. זאת הסיבה שיש בתוך המיקרוגל צלחת מסתובבת, כדי שכל האוכל יעבוד דרך הנקודות שבהם יש תנודות חזקות יותר, וכך החימום יהיה אחיד בכל הצלחת. אצלי בבית הצלחת לא מסתובבת ואני נאלץ לקבל רק חצי מהפופקורן מכל שקית והאוכל בצלחת חלקו חרוך וחלקו קר. אני ממליץ לצפות בסרטון הזה שמדגים את התופעה בצורה מאוד משכנעת לדעתי.

***

אז מה הבעיה עם מתכת בתוך המיקרוגל?

המיוחד במתכת הוא שהאלקטרונים בה חופשיים לנוע. במצב סטטי האלקטרונים יסתדרו כך שהשדה החשמלי בתוך המתכת יהיה אפס, כך שאין סיבה לתנועה וכל המערכת בשיווי משקל. כלומר, במצב סטטי אין שדה חשמלי בתוך מוליך. במידה וצורת המוליך היא כדור, ואין שדה חיצוני המטענים יתפזרו באופן שווה על הדפנות, מטעמי סימטריה.

אם הגוף אינו כדור מושלם, ריכוז המטענים על פני הדפנות אינו אחיד. באזורים מחודדים יהיה ריכוז מטען גבוה יותר. כמו כן, אם מדובר בכדור, אך הוא נמצא בשדה חיצוני, גם אז פילוג המטען על הדפנות לא יהיה אחיד. מטענים חיוביים ינועו עם כיוון השדה ומטענים שליליים כנגדו, כלומר הגוף יעבור קיטוב של המטען בו.

איור 2: המחשה של פילוג המטען בכדור מוליך ללא שדה חשמלי ותחת שדה חשמלי ובלי או עם שפיץ.

בתגובה לשדה אלקטרומגנטי אשר מתנודד בזמן, מטענים ינועו הלוך ושוב כתגובה לשדה החשמלי המשתנה וייווצרו זרמים בתוך המוליך. זרמים אלה עדיין מאפסים את השדה בתוך המוליך מעומק מסוים, ולכן אני אניח עבור הסבר זה שגם במצב הדינאמי השדה החשמלי בתוך המוליך הוא אפס.

מכיוון שהשדה החשמלי בתוך המוליך הוא תמיד אפס, ברור שהגל האלקטרומגנטי (שחלקו הוא שדה חשמלי) לא חדר לתוכו, ומכאן ברור שהאנרגיה שנושא הגל מוחזרת. כלומר, משטח מתכתי מהווה 'מראה' עבור גל אלקטרומגנטי. זאת הסיבה שהגלים שמוזנים לחלל החימום מוחזרים מקירות החלל. זאת גם הסיבה שהגלים אינם בורחים החוצה. על הדלת יש רשת מתכתית שמהווה גם היא קיר כל עוד 'החורים' קטנים מאורך הגל.

כעת אנחנו מוכנים לדון בבעיות שנוצרות עקב הכנסה של מתכות לתוך המיקרוגל.

***

נזכר שבגופים מוליכים שנמצאים בשדה חשמלי משתנה בזמן נוצרים זרמים משתנים, ומה שחשוב עבורנו הוא שהזרמים שנוצרים באזורים שפיציים יהיו גבוהים יותר באופן משמעותי מאזורים אחרים. בנקודות שפיץ אלה יתפתח ברגעים מסוימים פוטנציאל חשמלי (מתח) גבוה מאוד ביחס לגוף המתכתי של חלל החימום שהוא בפוטנציאל נמוך. כאשר הצטבר מספיק מטען, הפוטנציאל בשפיץ מספיק גבוה כך שהשדה החשמלי ליד השפיץ גבוה משדה הפריצה של האוויר. במקרה זה האוויר עובר יינון והופך ממבודד למוליך ונראה ברק חשמלי נוצר בין השפיץ לגוף. תופעה זאת עלולה לגרום להתלקחות ולפגיעה במכשיר החשמלי ולכן לא רצויה.

ומה אם נשים מתכת ללא שפיצים? אפשרי, למעשה תוכלו למצוא במיקרוגלים צלחות השחמה, מדפים ממתכת, שקיות לחימום צ'יפס וחפצים נוספים שאינם מזיקים. בנוסף, אם תעטפו את האוכל שלכם ברדיד אלומיניום כך שכל המשטח שלו חלק, כל שכנראה יקרה הוא שהאוכל יישאר קר. רדיד האלומיניום יחזיר חלק גדול מהקרינה ויגן על האוכל מחימום. כתבתי "כנראה", כי לא ניסיתי ואני לא ממליץ לכם לנסות.

לדעתי, מצב זה אינו מומלץ מסיבה נוספת. הגלים אינם נבלעים באוכל ומוחזרים בעוצמות ובזוויות שלא נלקחו בחשבון על ידי המנדסים שתכננו את המכשיר. יכולים להיווצר שדות חזקים במקומות שלא תוכננו לכך ועלולים אולי לגרום להתלקחות. בנוסף, גלים אלה עלולים לגרום לעומס ונזק למקור הגלים. אינני בטוח בדיוק מדוע המקור רגיש להחזרים גדולים מידי, ולא ניסיתי בעצמי. אשמח לשמוע תשובות מלומדות מהקהל.

***

נקודה תחתונה: יש שתי תופעות בעייתיות שנגרמות על ידי מתכות במיקרוגל. האחת, הצטברות מטען ופריקה לדופן, והשניה, החזרות לא צפויות של גלים. כלומר, זה לא שאסור לשים מתכות בפנים, אלא שלא כדאי.

נקודה עוד יותר תחתונה ואף יותר חדה וברורה: אל תשימו מתכות במיקרוגל!

מודעות פרסומת

כשלון שכולו הצלחה – על הניסיון לשחזר את ניסוי הרץ

בשנים האחרונות אני משתדל לקחת על עצמי בחופשת הקיץ פרויקט מאתגר שחורג מהפעילות היום-יומית. לפעמים התוצאות מעניינות ולפעמים פחות.

***

בשנת 1865, אחרי שנים רבות של מחקר ופיתוח, פרסם ג'יימס קלרק מקסוול את ספרו "תיאוריה דינמית של השדה האלקטרומגנטי". בספר זה סיכם מקסוול את כל הידוע על חשמל ומגנטיות. בנוסף, הוא הציג בספר בצורה סדורה את התיאוריה הכוללת שלו לנושא, שאותה פרסם קודם לכן בשורה של מאמרים.

התיאוריה של מקסוול היתה מהפכנית. היא החליפה את רעיון הפעולה (של כוחות) ממרחק באופן מיידי, התיאוריה השלטת באותה תקופה, בשדות אלקטרומגנטיים מתפתחים בזמן. השדה, מונח אבסטרקטי לחלוטין, הוגדר ללא מודל מכניסטי. התיאוריה היתה כתובה במתמטיקה מסובכת ולא מזמינה, וכך היא נשארה, כרעיון מעניין ותו לא. אחת התחזיות המעניינות של התורה היתה קיומם של גלים אלקטרומגנטיים שנעים במרחב במהירות האור.

בין השנים 1886-1889 ביצע היינריך הרץ סדרה של ניסויים מפורסמים שבהם הוכיח את קיומם של הגלים האלקטרומגנטיים. ניסויים אלה עזרו לקבע את התורה האלקטרומגנטית של מקסוול כתורה הבסיסית של התחום המקובלת על כולם. הרץ בנה מכשיר שמייצר מתח גבוה בין שתי אלקטרודות כך שנוצרת התפרקות חשמלית ביניהן וניצוץ (ברק קטן). האנטנה הנושאת את הניצוץ הפיצה גלים אלקטרומגנטיים בתדר גבוה (סדר גודל של מאות MHz). את הגלים הוא קלט באמצעות אנטנת דיפול, שהיא בעצם מוט מתכת קטוע במרכזו, בדומה לאנטנה המשדרת. קליטת הגל מעלה את המתח החשמלי על האנטנה, ובמתח גבוה מספיק האוויר 'ייפרץ' חשמלית ויוצר ניצוץ בין הקצוות (ראו איור 1).

איור 1: סכימה של מערך הניסוי של הרץ. משמאל, מקור מתח גבוה מסוג רומקורף מחובר לאנטנת דיפול. מימין, אנטנת קליטה מעגלית עם מקטע חסר לקבלת פריצה במתח גבוה. המקור לאיור: ויקיפדיה, לשם הועלה על ידי המשתמש Hertzian.

הרץ עשה עבודה יסודית והראה גם שידור וקליטת של גלי רדיו בפעם הראשונה, גם את קיטוב הגל וגם הציב מראה לגלים, ומתוך מדידת הגל העומד שנוצר, מדד את מהירות האור.

***

בתחילת הקיץ קראתי ספר על התפתחות רעיון השדה האלקטרומגנטי ששם הוזכר, כדרך אגב, הניסוי של הרץ. הניסוי לא נראה מסובך מדי במונחים של היום. גמרתי אומר לשחזר אותו. הצלחתי להלהיב עוד שותף בעל ידע בפיזיקה, זמן פנוי ויכולת טובה משלי לבנות דברים. ההגבלות ששמנו לעצמנו: לנסות ולשחזר את הניסוי ההיסטורי, ככל שניתן, ולנסות לארוז את זה כך שיתאפשר להדגים זאת בנוחות מול קהל. רצינו להיעזר בעבודות קודמות אך לא מצאנו שום תיעוד ברשת של אנשים אחרים ששחזרו ניסוי זה בשנים האחרונות, וזאת למרות השפע ברשת וקלות החיפוש. כאן היינו צריכים לחשוד, אבל היינו נלהבים מידי.

***

להרכבת אנטנת השידור ניסרנו מוט מתכת חלול באורך חצי מטר לשני חלקים שווים. על הקצוות שהופרדו הרכבנו כדורי מתכת והשארנו אותם קרובים מאוד אחד לשני. זאת הצומת עליה תהיה התפרקות חשמלית וניצוץ. חיברנו את שני צידי המוט המופרדים למקור מתח מסוג רומקורף (Ruhmkorff Induction Coil) שהוא סוג של שנאי שמייצר פולסים מחזוריים של מתח גבוה ממקור מתח ישר נמוך. בכל פעם שהמתח בין הכדורים מגיע לערך גבוה מספיק מתרחשת פריצה חשמלית באוויר בין הכדורים, מטענים חשמלים יעברו מצד לצד דרך האוויר, ואנו נראה ניצוץ. בזמן הניצוץ נוצר גל עומד על פני שני חלקי האנטנה. נקודת המקסימום של הזרם נמצאת במרכזה (באזור הפריצה). בגלל הצורה ואורך האנטנה היא אמורה לתפקד כבורר תדרים לגל שנוצר עליה. התדר העיקרי המצופה להיות מופץ במרחב משוער להיות מסדר גודל של 300 מגה-הרץ.

איור 2 +3: מקור מתח גבוה מסוג רומקורף (Ruhmkorff Induction Coil). למעלה – איור של המכשיר. ניתן לראות סליל בתוך סליל לקבלת שנאי. בצד ימין חוטים לחיבור מתח ישר נמוך ומעליהם הויברטור. מעל לסלילים ניתן לראות את המוטות שברווח ביניהם תיווצר ההתפרקות החשמלית. למטה – סכימה של המכשיר. המקור לאיורים: ויקיפדיה וויקיפדיה. האיור העליון לקוח מספר שפורסם ב-1920 על רכיבי רדיו. האיור התחתון הועלה לויקיפדיה על ידי המשתמש PieterJanR ועובד על ידי המשתמש Chetvorno.

לקליטת 'השידור' הצבנו אנטנת קליטה שהמבנה שלה זהה לאנטנת השידור. בין שני הקצוות המנוסרים חיברנו נורת ניאון קטנה שנדלקת כאשר בין הקצוות שלה מתפתח מתח גבוה מ-70 וולט. בניסוי המקורי הרץ השאיר קצוות מנותקים ומחודדים, עליהם הרכיב מיקרוסקופ והשחית את עיניו בחושך מוחלט במשך חודשים ארוכים כדי לבצע את המדידות. במקרה הזה השיקול של נראות מול קהל, והצורך לשמר שפיות, גבר על הרצון לדיוק היסטורי.

***

כפי שכותרת הרשימה כבר חשפה, זה לא עבד.

הצלחנו להדליק את הנורה, אבל רק במרחקים מאוד קצרים. במרחקים אלה היה עלינו הנטל להוכיח שאנחנו מודדים תוצאה של הגלים ולא של פרופיל השדה החשמלי החזק קרוב לאנטנה. כלומר, להראות שאם נרחיק את קצוות האלקטרודות, כך שנשאר עם שדה חזק אבל ללא פריצה (ללא גל), לא נראה הארה. הגבול בין הארה לחוסר הארה היה מאוד קרוב ולא אמין.

אחת ההצלחות היפות הייתה להראות את קיטוב הגל. כאשר האנטנות היו מקבילות אחת לשניה, קיבלו הארה בנורה. כאשר הצבנו את האנטנות בניצב אחת לשניה, ההארה נעלמה.

ישנם שני כיוונים בסיסיים כדי לשפר את המדידה: לשפר את השידור או לשפר את הקליטה. בתחום השידור ניסינו לשפר את תפקוד אנטנת השידור בכמה דרכים גיאומטריות. ניסינו לסנן תדרים לא רצויים על ידי סלילים (חוסמים תדרים נמוכים). בתחום הקליטה ניסינו להשתמש במגבר מתח ישר להגביר את רגישות הנורה (לעבוד יותר קרוב למתח ההפעלה שלה) ושקלנו להחליף אותה במד מטען (קבל ומד מתח עם התנגדות כניסה גבוהה מאוד) כדי למדוד באינטגרציה על פני זמן.

לאחר חודש עבודה (לא רצופה, קצת פה קצת שם, בכל זאת יש גם עבודה שוטפת) הקיץ שלנו נגמר והתוצאות נשארו לא משכנעות. נכנענו לעת עתה.

***

האם בזבזנו את זמננו?

ברור שלא.

קודם כל למדנו צניעות. אני הייתי משוכנע שעם הציוד המודרני שלנו נוכל לשחזר את הניסוי הבסיסי בשבועיים והיו לי תוכניות המשך. בפועל זה לא קרה. מניסיוני, כך עובד גם מחקר מדעי אמיתי. אם ניסויים היו קלים לביצוע, משהו אחר כבר היה מבצע אותם. בין הפרסומים על הצלחות יש בעיקר המון כישלונות. החוקרים המובילים הם אלו שמספיק מוכשרים כדי להצליח, ומספיק איתנים נפשית כדי להתמודד עם הכישלונות, יום אחרי יום.

למדנו קצת תיאורית אנטנות שבה שנינו לא היינו בקיאים כלל. למדנו איך בונים מד מטען ברמת הרכיבים על הלוח. מצאנו עניין רב בעבודת המחקר ובנושא עצמו, קראנו ספרים ומאמרים והתייעצנו עם מומחים.

במדד פיתוח מוצר 'מוכן לשיווק' נכשלנו כליל, אך במדד העניין והלמידה, הצלחנו מעל ומעבר, ועבורנו זה היה מספיק טוב.

הדהימו את חבריכם! – על נפלאות ה-coherer והקשר שלו לגלי רדיו

נתחיל הפעם בסדנת יצירה של אביזר קסום כדי להדהים את חבריכם. זה דורש מעט התעסקות בידיים, אבל לא משהו מסובך במיוחד.

הציוד הנדרש לבניית האביזר: שני ברגים מתכתיים גדולים עם קצה שטוח, צינור פלסטיק קשיח עם פתח מעט צר יותר מרוחב הברגים, שופין, מלחציים, שקל אחד.

הציוד הנדרש לביצוע הקסם: נורת לד קטנה ופשוטה, נגד+סוללות המתאימים לנורה, חוטי מתכת מוליכים ומצית גדול כמו אלו שקונים לכיריים במטבח.

בניית ההתקן: ראשית יש להבריז את הצינור כך שנוכל להבריג פנימה את הברגים (להבריז = לייצר חריצי הברגה). ההברזה אינה חובה, אך היא מייצרת יציבות מכאנית להתקן. הבריגו את אחד הברגים לתוך הצינור כך שחציו בפנים וחציו בחוץ והוא מגיע עד למרכזו של הצינור (אין צורך לדייק). שייפו את השקל לקבלת אבקה. אין צורך בכמות גדולה. שיפכו מעט אבקה לתוך הצינור והבריגו את הבורג השני כך שהאבקה נמצאת בין שני הקצוות השטוחים של הברגים בתוך הצינור.

להכנת הקסם חברו מעגל חשמלי טורי של סוללות, נורת לד קטנה פשוטה, נגד מתאים והרכיב שבניתם. הבריגו את הברגים בעדינות פנימה לתוך הצינור עד שתקבלו הולכה חשמלית ואור בנורה. הרחיקו בעדינות את הברגים זה מזה מעט כך שהאור כבה. כעת קרבו את המצית אל המעגל והדליקו אש. הפלא ופלא, הנורה תידלק!

במקרה הכינותי מראש מעגל עם coherer.

הרכיב שבנינו הוא גרסה פשוטה ופרימיטיבית של Coherer.

האבקה ששייפנו מהשקל מכילה כמות מספקת של ניקל, שהוא חומר פרומגנטי (בדומה לברזל וקובלט). במצב הראשוני דאגנו שצפיפות חלקיקי האבקה בין הברגים תהיה נמוכה כך שהמוליכות החשמלית נמוכה ולא זורם די זרם להדליק את הנורה. מסיבה שלא ידועה היטב, בנוכחות של גלים אלקטרומגנטיים חזקים מספיק, גרגירי האבקה הפרומגנטית נדבקים אחד לשני כך שנוצר שביל הולכה חשמלית, המוליכות של הרכיב עולה באופן משמעותי, הזרם עולה והנורה נדלקת. כדי לחזור למצב הראשוני יש להקיש בעדינות על הרכיב.

לחיצה על הכפתור של המצית מייצרת באופן רגעי מתח גבוה מאוד בין שתי האלקטרודות המתכתיות בקצותיו (לדעתי אלפי וולטים, לא בדקתי). המתח מייצר שדה חשמלי שגבוה משדה הפריצה של האוויר, כך שהאוויר הופך רגעית ממבודד חשמלית למוליך וזרם יזרום דרך האוויר בין שתי האלקטרודות. אנחנו נראה ניצוץ והוא זה שיצית את הגז לקבלת אש.

הניצוץ החשמלי הוא זה שמייצר גלים אלקטרומגנטיים המתפזרים לכל עבר. גלים אלה חזקים מספיק כדי להפעיל את ה-coherer, להעלות את המוליכות ולהדליק את הנורה.

אם ברצונכם להשתעשע, בקשו מהקהל להדליק את הנורה עם גפרור וכאשר הם לא מצליחים הדגימו עם המצית. ניסיתי, הקהל משתעשע. לכיבוי הנורה יש להקיש בעדינות על הצינור.

ה-coherer יכול לשמש כקסם נחמד, אך יש לו גם חשיבות היסטורית בהתפתחות הרדיו. במובן מסוים, ה-coherer הוא מה שקדם למה שקדם לטרנזיסטור.

***

בסוף המאה ה-19 החל לעבוד גוליילמו מרקוני האיטלקי על פיתוח טלגרף אלחוטי. את רעיונותיו הראשוניים הוא שאב מהניסויים המפורסמים של היינריך הרץ שבהם הוכיח זה את קיומו של גל אלקטרומגנטי כפי שחזתה התיאוריה של ג'יימס קלרק מקסוול, ובכך שכנע את קהילת הפיזיקאים בתקפותה ובחשיבותה. הרץ יצר התפרקויות של מתח גבוה ובכך שידר גלים אלקטרומגנטיים (בתחום תדרים שהיום אנחנו מכנים גלי רדיו) שאותם קלט באנטנה. מנקודה זאת החל מרקוני את עבודתו. בדרך להצלחה הוא ביצע מספר שיפורים משמעותיים בקליטה ובשידור. אחד מהשיפורים היה שימוש ב-coherer, שהיה סוג של גלאי שאותו ראה מרקוני בניסוייו של הפיזיקאי אוליבר לודג' בשידור וקליטה של גלים אלקטרומגנטיים.

הרעיון הבסיסי של שימוש ב-coherer בטלגרף אלחוטי מסתמך על כך שהרכיב מזהה שידור של גל אלקטרומגנטי ובתגובה סוגר מעגל חשמלי, בדומה להדגמה שתיארתי. המעגל מדווח למפעיל הטלגרף שהתקבל אות (קו או נקודה) וגם מייצר נקישה מכאנית על הרכיב שגורמת לפתיחת המעגל. כך, כל אות שידור שמגיע סוגר ופותח את המעגל החשמלי והמידע שהיה בעבר מגיע דרך חוטי הטלגרף, מגיע באופן אלחוטי.

כבר בתקופתו של מרקוני ה-coherer היה ידוע כרכיב לא אמין ולאחר מספר שנים הוחלף ברכיבים מוצלחים יותר. כיום, לאחר מהפכית המוליכים למחצה וההתקדמות הרבה בתחום האנטנות, ל-coherer נותר רק ערך היסטורי. עם זאת, הוא כל כך פשוט לבנייה שעדיין יש לא מעט אנשים שנהנים להרכיב איתו מעגלים כתחביב, כפי שניתן לראות בשני הסרטונים הקצרים הבאים (ובהרבה אחרים).

{שם משעשע (אותי) שקשור ולא קשור לרשימה} – על עקרון הפעולה של סוללה

אין איש או אישה שלא דמע למראה אדם הנע אנא ואנא בחיפוש נואש אחר מטען כדי להאריך, ולו במעט, בדקות ספורות, את חיי הסוללה של המכשיר הסלולרי.

"לא, אין לי מטען של אייפון, אחי, אני רק אנדרואיד".

מי מאיתנו לא החסיר פעימה למראה השלומיאל ששכח את אורות המכונית דלוקים כל הלילה וכעת זקוק לחסדי הזולת כדי להתניע את הרכב.

"לא, אחי, מצטער, אני לגמרי מאחר לעבודה".

מי מאיתנו לא גיחך ריחם על ההוא מהעבודה שתמיד מאחר.

"לא, זה לא להאמין, נגמרה הסוללה של השעון המעורר במהלך הלילה והוא לא צלצל. אתה מאמין לזה?"

תמונה 1: סוללות מסוגים שונים. המקור לתמונה: ויקיפדיה לשם הועלתה על ידי המשתמש en:User:Brianiac.

***

סוללות מהוות חלק בלתי נפרד מחיינו.

בשנת 1800 הציג אלסנדרו וולטה, פיזיקאי וכימאי איטלקי, את מה שמכונה היום 'הערימה הוולטאית' (Voltaic pile). הוא ערם לוחיות של נחושת ואבץ לסירוגין כשבין הלוחיות הפרידו בדים ספוגים במי-מלח (ראו תמונה 2). על ידי חיבור חוטי מתכת לשתי הלוחיות בקצוות הערימה הוא קיבל זרם חשמלי מתמשך. היה מדובר במהפכה, לא פחות, בחקר התופעות החשמליות.

וולטה העניק לחוקרי המדע מקור זרם חשמלי רציף שניתן לשלוט על עוצמתו על ידי קביעת מספר הלוחיות בערימה. עד אז ידעו לייצר חשמל רק באמצעות שפשוף חומרים מסוימים לקבלת חשמל סטטי, וידעו לאגור אותו בצנצנת ליידן שהיא סוג של קבל, ולכן הפריקה שלו מהירה ולא התאימה לשימוש מבוקר.

תמונה 2: ערימה וולטאית המוצגת באיטליה (Tempio Voltiano in Como). המקור לתמונה: ויקיפדיה, לשם הועלתה על ידי המשתמש GuidoB.

השימושים לא איחרו לבוא וכך נולד למשל תחום האלקטרוכימיה, ובעזרת תהליך האלקטרוליזה התגלו יסודות כימיים רבים.

הערימה הוולטאית היא בעצם הסוללה הראשונה ועקרון הפעולה שלה זהה רעיונית לסוללות בהן אנחנו משתמשים גם היום. עיקר ההבדל הוא בהנדסה, כלומר סוג החומרים והצורה בה הם מסודרים.

כלומר, כדי להבין כיצד פועלות סוללות ראשית יש להבין כיצד פועל תא וולטאי.

***

בשלב זה אני מעוניין להמליץ על דרך חלופית ואולי טובה יותר לקבל את אותו המידע שאני הולך לכתוב.

לטיילר דוויט (Tyler DeWitt) יש ערוץ יוטיוב בו הוא מעלה סרטונים שבהם הוא מסביר כימיה. עכשיו שמעו, ביוטיוב יש הרבה סרטונים, חלקם טובים, אבל דבר כזה עוד לא ראיתם. אם אתם אוהבים סרטונים ולא נרתעים מאנגלית, אני ממליץ לראות את הסרטון שלו על תאים וולטאים, במקום לבזבז את זמנכם בקריאת שאר הרשימה. מדובר במורה משכמו ומעלה, צריך לראות כדי להאמין. אני נעזרתי בחלקים רבים בסרטון שלו בכתיבת הרשימה.

***

טוב, אתם עדיין פה?

כדי להרכיב את התא הוולטאי שלנו נתחיל משני כלים עם מים שבאחד מומס אבץ גופרתי ובשני מומסת נחושת גופרתית (ראו איור 3). פעולה זאת דומה להמסת מלח שולחן במים. התרכובת NaCl (נתרן כלורי, מלח שולחן) מתפרקת במים לשני יונים: יון חיובי +Na ויון שלילי -Cl. משמעות סימן הפלוס היא שבאטום המסומן חסר אלקטרון אחד ולכן הוא בעל מטען חשמלי חיובי. בדומה, התרכובות הגופרתיות מתפרקות במים ליון שלילי SO4-2 וליונים חיוביים Zn+2 בכלי אחד ובשני Cu+2. משמעות ה-2 בסימון היא שבאטומים האלה חסרים שני אלקטרונים ולכן הם בעלי מטען חשמלי חיובי כפול.

השלב השני הוא הכנסה של אלקטרודה מתכתית עשויה אבץ לכלי עם האבץ המומס ואלקטרודה עשויה נחושת לכלי עם הנחושת המומסת. אם נחבר את שתי האלקטרודות אחת לשניה בחוט מוליך, זרם חשמלי יחל לזרום דרכו. אלקטרונים יחלו לנוע מהאבץ לנחושת ונוכל להשתמש בזרם החשמלי שנוצר כדי להפעיל, למשל, טוסטר משולשים (קטן).

איור 3: תרשים סכמטי של תא וולטאי (ללא גשר מלחים)

מדוע זורם זרם?

היונים של האבץ והנחושת מעוניינים באלקטרונים כדי להפוך לנייטרליים והדרך לקבל אותם הוא למשוך אותם מהצד השני דרך החוט המוליך. מסתבר שבקרב בין נחושת לאבץ על האלקטרונים, הנחושת נחושה יותר ומושכת אותם אליה (הסיבה לניצחון הנחושת קשורה במאזני אנרגיה שאינם חשובים להבנת העניין העיקרי).

אטום אבץ על האלקטרודה יאבד שני אלקטרונים, יהפוך ליון אבץ ויתמוסס לתוך המים. האלקטרונים שעברו צד יתחברו לאחד היונים המומסים של הנחושת בקרבת האלקטרודה. יון הנחושת יהפוך לנייטרלי ויתחבר לאלקטרודה. כלומר, תוך כדי התהליך אלקטרודת האבץ תתמוסס לתוך הנוזל ואלקטרודת הנחושת תלך ותשמין, כאשר תצופה באטומי נחושת מהנוזל (ראו איור 4).

איור 4: חמצון-חיזור. אטום אבץ מהאלקטרודה מאבד שני אלקטרונים ומומס לנוזל. יון נחושת נוטל שני אלקטרונים ומתחבר לאלקטרודה.

תהליך מסוג זה נקרא בעגה 'חמצון-חיזור' (Redox: reduction–oxidation reaction). האבץ מאבד אלקטרונים ולכן עובר חמצון והנחושת מקבלת אלקטרונים ולכן עוברת חיזור. כל אחד מהכלים עם היונים המומסים והאלקטרודה המתאימה נקרא חצי תא אלקטרוכימי. האבץ מכונה 'אנודה' והנחושת 'קתודה'.

דבר אחרון שהדחקנו עד עתה בתא הוולטאי הוא שהנוזלים מכילים גם יוני סולפט שליליים (SO4-2). בתחילת התהליך סך המטען בנוזל בשני הצדדים היה אפס. אך כעת, בצד של האבץ נוספים לנוזל יונים חיוביים, לכן יחד עם יוני הסולפט השליליים סך המטען כעת חיובי. בצד של הנחושת נגרעים מהנוזל יונים חיוביים, לכן יחד עם יוני הסולפט סך המטען שלילי. אם כך, כעת נוצר הפרש מטען ולכן מתח חשמלי בין הצדדים שמתנגד למעבר של אלקטרונים נוספים. כדי להמשיך ולקבל זרם יש צורך בגשר מלח (ראו איור 5).

גשר המלח מחבר בין שני מיכלי המים ומכיל מלח מומס שאינו מגיב עם החומרים הקיימים בניסוי. הגשר אינו מאפשר מעבר יונים מצד לצד ובו בעת מפריש את היונים שבו לנוזל וכך דואג לשמירת הנייטרליות בכל אחד מהצדדים.

איור 5: גשר מלח. בעקבות תהליך החמצון-חיזור נוצר הפרש מטען ולכן מתח חשמלי בין שתי חצאי התא האלקטרוכימי. כדי להחזיר את התא לנייטרליות משתמשים בגשר מלח המספק את היונים החסרים לנייטרליות.

***

איך כל זה קשור לסוללה המוכרת שקונים בחנות?

סוללה מסוג זה היא סוג של 'תא יבש' (dry cell) שבו הרעיון זהה, רק שבמקום נוזל יוני עושים שימוש בחומרים יבשים, למשל בג'ל.

בחנו את איור 6 וראו שאתם מזהים את החלקים העיקריים שמנינו עבור תא וולטאי: האנודה, הקתודה והחומר היוני.

איור 6: תרשים סכמטי של סוללה יבשה מסוג אבץ-פחמן. נסו לזהות מי האנודה, מי הקתודה והיכן החומר היוני. המקור לאיור: ויקיפדיה לשם הועלה על ידי המשתמש Pearson Scott Foresmann.

שימו לב שהאבץ במבנה זה משמש גם כאנודה וגם כחומר מבנה אוטם למניעת זליגה של שאר החומרים. אם נשתמש בסוללה מעבר להמלצת היצרן אנחנו עלולים לכלות את האבץ עד כדי כך שהאטימה בסוללה תפגע וחומרים לא אטרקטיביים יזלגו החוצה.

♪דיגי דיגי דיגי דיגיטציה♫ – על המרת אות אנלוגי לדיגיטלי

נניח שברגע של שיקול דעת בעייתי החלטתם לחבר מיקרופון למחשב ולהקליט את עצמכם שרים, למשל, את שיר הנברשת של סיה. המחשב, כידוע הוא יצור דיגיטלי, ולכן שמורים בו רק שורות של אפסים ואחדים.

איך הופכות הצעקות שלכם למידע שיכול להישמר בזיכרון המחשב? במילים אחרות, כיצד מומר אות אנלוגי למידע דיגיטלי?


תמונה 1: נברשת, למקרה שלא ידעתם. המקור לתמונה: ויקיפדיה, לשם הועלתה על ידי המשתמש Steelbeard1.

הצעד הראשון הוא להמיר את המידע הרצוי למתח חשמלי.

המיקרופון הוא מכשיר חשמלי שממיר גלי קול לאותות חשמליים. גלי הקול גורמים לממברנה לרטוט. רטט זה גורם לתנועה יחסית בין מגנט לסליל וכתוצאה מכך נוצרים זרמים חשמליים משתנים בסליל (למתעניינים, חפשו 'חוק פרדיי' או 'השראה אלקטרומגנטית'). המתח המשתנה שנמדד בקצות הסליל הוא עדיין אנלוגי, כלומר הוא רציף וודאי שאינו מיוצג על ידי ביטים '0' או '1'.

כיצד, אם כן, מומר האות החשמלי האנלוגי לאות דיגיטלי?

התשובה היא רכיב שנקרא Analog-to-digital converter או בקיצור ADC, וזה נושא הרשימה.


תמונה 2: מיקרופון, למקרה שלא ידעתם. המקור לתמונה: ויקיפדיה, לשם הועלתה על ידי המשתמש ChrisEngelsma.

***

ראשית, חשוב לדעתי להבין שהכוונה באותות אנלוגיים היא לכל התופעות המוחשיות בעולם החומרי ולכן ניתן למדוד אותם. אות דיגיטלי, לעומת זאת, הוא רעיון מופשט ומשום כך יש צורך במכשיר שייצור אותו באופן מלאכותי.

אות דיגיטלי מורכב רק משני ערכים אפשריים שאותם אנחנו מסמנים לשם נוחות ב-'0', ומתבטא בד"כ בערך נמוך, וב-'1' שמתבטא בד"כ בערך גבוה. כל המוסכמות האלה הן שרירותיות, כל עוד שומרים על שני ערכים ועל חוקי לוגיקה ברורים ביניהם. עסקתי בכך בהרחבה בסדרה של רשימות על אלגברה בוליאנית ועל איך להשתמש בה באלקטרוניקה דיגיטלית.

למעבר לאות דיגיטלי יש יתרונות רבים, ביניהם היכולת לבצע עיבוד באמצעות מיקרופרוססורים רבי עוצמה וטיפול ברעשים. ה-ADC הוא החוליה המקשרת בין העולם האנלוגי בקצות הממירים לבין המיקרופרוססורים הדיגיטליים בתוך המחשב המאפשרים עיבוד אותות וטיפול מתקדם במידע.

הדיגיטציה ב-ADC מורכבת משני שלבים: 1) דגימת האות הרציף והחזקה של הערך, 2) קוונטיזציה וקידוד.

בשלב הראשון המעגל דוגם את הערכים של המתח רק בזמנים בודדים שנקבעו מראש, למשל בתדירות קבועה. רק הערכים שנדגמו מוחזקים ומוזנים הלאה.

בשלב השני הערך של המתח מקוטלג לפי שלבים בסולם שנקבעו מראש. לדוגמה, נניח שערכי המתח נעים ברציפות בין 0 ל-10 וולט. אני יכול לקבוע, למשל, עשרה שלבים בסולם: 0-1, 1-2, 2-3 וכולי או 2 שלבים בסולם: 0-5, 6-10 .

מטרת שלב הקידוד הוא לתת שמות בינריים לשלבים של הסולם שאותם המחשב יכול להזין לזיכרון ולעשות זאת באופן חסכוני. אם למשל ישנם רק 4 שלבים בסולם נוכל לכנות אותם 00,01,10,11, כלומר נוכל להסתפק בשני ביטים או סיביות של מידע. את הזוג הבינארי הזה ניתן לשמור בזיכרון ממוחשב, לשלוף בקלות ולבצע בקלות על המידע מניפולציות כאלה ואחרות. כאן טמון כוחו החישובי של מחשב.

כיצד ממשים את כל הרעיונות האלה במציאות?

***

ישנן צורות רבות ומגוונות לממש ADC כאשר לכל צורה יתרונות וחסרונות הנדסיים. בחרתי להציג כאן רק את המימוש הפשוט ביותר להסבר לדעתי. אתמקד בשלבים המעניינים יותר של הקוונטיזציה והקידוד.

נניח שלפני הכניסה ל-ADC ישנו מעגל שמבצע את פעולת הדגימה וההחזקה של האות (בעגה sample and hold או בקיצור S/H). מדובר בד"כ בקבל שכניסת האות המומר אליו נסגרת ונפתחת באופן מחזורי. כאשר הכניסה פתוחה, הקבל נטען לערך של המתח המומר ואז מנותק ממנו ושומר את הערך הישן עד למחזור הבא. המתח בקבל מוחזק ומוזן הלאה באמצעות רכיבים נוספים (למתעניינים: הקבל ממוקם בין buffer כניסה ויציאה ומוזן דרך FET שמשמש כמתג ונפתח ונסגר לפי קצב שמוזן חיצונית).

אסביר את עקרון הפעולה לפי דוגמה פשוטה של ארבעה שלבים בסולם המתחים שמקודדים לשתי סיביות (2bit).

איור 3: קוונטיזציה וסולם המתחים. התעצלתי לאייר במחשב…

ליצירת סולם המתחים נשתמש בשורה של נגדים זהים המחוברים בטור כשבקצה אחד מחובר מתח גבוה ובשני הארקה (מתח אפס). לפי חוק אוהם על כל נגד נופל חלק שווה מהמתח ולכן כל נקודה בין הנגדים מהווה שלב בסולם המתחים (ראו צד שמאל של איור 3).

כדי לבדוק לאיזה שלב בסולם מתאים מתח הכניסה המוחזק ב-S/H באותו הרגע נעשה שימוש ברכיב שנקרא comparator, כלומר משווה (המשולשים באיור 3).

המתח ביציאה מרכיב המשווה יכול להיות רק אחד משני ערכים: גבוה או נמוך, '1' או '0' דיגיטלי. הוא בעצם עונה על השאלה האם המתח בכניסה שמסומנת בפלוס גבו מהמתח בכניסה שמסומנת במינוס. אם התשובה חיובית, המשווה מוציא '1' ואם שלילית מוציא '0'.

שלושת המשווים במעגל המוצג באיור בודקים את מתח הכניסה אל מול ערכי הסולם. אם המתח נמוך מהשלב התחתון ביותר נקבל '0' בכל היציאות של המשווים. אם הוא גבוה מהשלב הראשון אך נמוך מכל השאר נקבל '1' ביציאה מהמשווה הראשון ו-'0' בכל האחרים, וכך הלאה. זאת בעצם הקוונטיזציה של האות האנלוגיה הנכנס.

שימו לב שככל שמספר המשווים שחיברנו גבוה יותר, כך הרזולוציה של הקוונטיזציה תהיה גבוהה יותר.

השלב האחרון הוא לקודד את הפלט של המשווים למספר דיגיטלי חסכוני יותר באמצעות לוגיקה דיגיטלית. בדוגמה באיור יש 4 שלבים אפשריים בסולם הקוונטיזציה ולכן האפשריות ביציאה מהמשווים הן 000 מתח הכי נמוך שלב '0' בסולם, 100 שלב '1' בסולם, 110 שלב '2' ו-111 שלב '3' הכי גבוה.

000 מקודד ל-0 בינארי ב-2 ביטים לכן ל-00

100 מקודד ל-1 בינארי ב-2 ביטים לכן ל-01

110 מקודד ל-2 בינארי ב-2 ביטים לכן ל-10

111 מקודד ל-3 בינארי ב-2 ביטים לכן ל-11

נסכם בטבלה:

הפתרון המצומצם הוא:

 

נזכר שסימן '+' הוא פעולת 'או', סימן '•' הוא פעולת 'וגם' וסימן גרש הוא פעולת היפוך. תוכלו לבדוק שהלוגיקה עובדת נכון. הראתי ברשימה קודמת איך להשתמש בשיטת מפות קרנו כדי להגיע למימוש מצומצם. המעגל המלא מוצג באיור 4.


איור 4: ADC מסוג flash 2bit ממיר מתח אנלוגי לדיגיטלי המיוצג בשתי סיביות. התעצלתי לאייר במחשב.

לסיום, אציין שה-ADC הזה נקרא flash type ADC והוא המהיר מכל המימושים האפשריים אך גם היקר והבזבזני מכולם ולכן מתאים רק לאפליקציות מסוימות.

מי הזיז את אבקת החשמל שלי?! על מקורות מתח (אולי חלק א' ואולי לא)

מזמן לא עסקתי בשעון המעורר שלי, אז בואו ונחזור אליו אבל הפעם מהצד האחורי.

כדי שהשעון שלי יפעל הוא צריך 'חשמל'. ישנן שתי דרכים מקובלות לספק לשעונים מעוררים את המתח וזרם החשמלי שלו הם זקוקים כדי לתפקד. האחת היא לחבר אותם לרשת החשמל והשניה היא שימוש בסוללות.

התוצאה הרצויה להפעלת השעון, קרי: אספקת מתח וזרם מתאימים, זהה בשתי השיטות, אבל הדרך להגיע לשם שונה בתכלית.

ברשימה זאת אעסוק בספק מתח המחובר לרשת החשמל. אולי בהמשך אכתוב על סוללות (בלי נדר).

picture1
תמונה 1: שעון דיגיטלי.

***

מה בעצם מגיע אלינו דרך שקע החשמל בקיר?

הפרש בפוטנציאל החשמלי בין שתי נקודות מכונה בעגה 'מתח חשמלי'. אם שתי נקודות שביניהן שורר מתח, מחוברות זו לזו על ידי מוליך, יחל לזרום זרם חשמלי מפוטנציאל גבוה לנמוך, בדומה למים שזורמים מנקודה גבוהה לנמוכה.

חברת החשמל דואגת שבין שני החורים שבשקע החשמל בקיר תמיד יהיה מתח. כמו כן, היא דואגת שאם נסגור מעגל בין שני החורים יזרום זרם.

אם נכפיל את כמות הזרם בכמות המתח נקבל את ההספק החשמלי שנמדד ביחידות 'וואט' וערכו רשום על כל מכשיר חשמלי שאנחנו קונים. ההספק הוא כמות האנרגיה המתבזבזת בכל שניה (כלומר מומרת מאנרגיה פוטנציאלית חשמלית למשל לחום, כמו בטוסטר משולשים). אם נכפיל את ההספק של מכשיר חשמלי בזמן שהוא פעל נקבל את סך האנרגיה שהתבזבזה בזמן זה, וזה חשבון החשמל שאנחנו משלמים (נמדד בקילו-וואט כפול שעה, הספק כפול זמן).

כדי לייצר מתח חשמלי צריך לעבוד קשה, ואת זה עושות הטורבינות בתחנות הכוח של חברת החשמל. המתח המיוצר בתחנות הוא מתח חילופין (ערכו משתנה באופן מחזורי) בעוצמה גבוהה מאוד (כ-400 קילו-וולט). חשמל במתח גבוה ניתן להוביל בזרם נמוך ובכך להקטין באופן משמעותי את בזבוז האנרגיה על קווי המתח הגבוה שמובילים אותו לאורכה ולרוחבה של המדינה.

%d7%a2%d7%9e%d7%95%d7%93%d7%99-%d7%97%d7%a9%d7%9e%d7%9c
תמונה 2: עמודי חשמל ליד נחל הבשור. המקור לתמונה: ויקיפדיה, לשם הועלתה על ידי המשתמש אורן פלס.

בשקע החשמל בדירה אין צורך במתח גבוה כל כך, ובכל מקרה ההובלה הסתיימה ולכן המתח בשקע הוא רק 220 וולט חילופין. לפני הכניסה לדירה ערכו של המתח הורד על ידי חברת החשמל, אך תלאותיו של החשמל עדיין לא הסתיימו. השעון המעורר זקוק לתפעולו למתח חשמלי ישר (שאינו משתנה) שערכו וולטים בודדים, ויישרף אם יחובר ישירות למתח הרשת. כאן נכנס המכשיר שאנחנו נוטים לכנות 'שנאי' או 'טרנספורמטור', אבל הוא בעצם מתאם מזרם חילופין למתח נמוך וקבוע (AC to DC adapter). המתאם אכן מכיל בתוכו רכיב המכונה שנאי אך גם רכיבים נוספים.

***

מהו שנאי (אידיאלי)?

המקור של שדה מגנטי הוא תנועה של מטענים חשמליים.

עובדה 1: כאשר מזרימים זרם חשמלי דרך תיל מוליך, נוצר שדה מגנטי סביב התיל שכיוונו משיק למעגלים קונצנטריים סביב התיל במרכז. אם נלפף את התיל לצורת סליל (מכונה לפעמים סילונית) כיוון השדה המגנטי בתוך הסליל יהיה בקירוב ישר לאורכו. עוצמת השדה תלויה בצפיפות הליפופים.

עובדה2: אם נלפף את הסליל המדובר סביב ליבת ברזל בצורת טבעת ונזרים דרכו זרם, שטף השדה המגנטי ילכד ויובל לאורכה של הטבעת.

עובדה 3: אם עובר דרך סילונית שטף משתנה בזמן של שדה מגנטי הוא גורם להתעוררות של זרם משתנה בזמן דרך תיל המלופף סביבה. עוצמתו של הזרם תלויה בצפיפות הליפופים.

אם כך, נוכל ללפף על שני צידי טבעת ברזל (מכונה הליבה) שני סלילים שונים, עם צפיפות ליפופים שונה (ראו איור 3). על סליל אחד נשים מתח חשמלי משתנה בזמן שיגרום לזרם חשמלי משתנה בזמן שיגרום לשטף שדה מגנטי משתנה בזמן בתוך הסילונית (עובדה 1) וכן לאורך הטבעת (עובדה 2) שיעבור גם דרך הסילונית השניה ויעורר בה זרם חשמלי משתנה בזמן (עובדה 3). עוצמה הזרם בסליל השני תהיה תלויה ביחס כמות הליפופים בין שני הסלילים, ולכן יתקבל מתח חשמלי שונה בין שני צידי הטבעת. כלומר, טבעת הברזל ושני הסלילים המלופפים סביבה משמשים לשינוי עוצמת המתח החשמלי כתלות ביחס מספר הליפופים. גם חברת החשמל משתמשת בשנאים כדי להקטין את המתח לאורך הרשת.

%d7%a9%d7%a0%d7%90%d7%99-%d7%90%d7%99%d7%93%d7%99%d7%90%d7%9c%d7%99
איור 3: סכימה של שנאי אידיאלי. המקור לאיור: ויקיפדיה, לשם הועלה על ידי המשתמש BillC.

***

פתרנו את בעיית עוצמת המתח, אך אנחנו עדיין תקועים עם מתח חילופין במקום מתח ישר ולכן הרכיב הבא הוא מישר זרם.

זרם חילופין שיוצא מהשקע בקיר משנה את כיוונו כ-50 פעם בשניה. תפקידו של המיישר הוא לגרום לזרם לזרום רק בכיוון אחד. את זאת נשיג על ידי שימוש בגשר דיודות.

דיודה היא רכיב אלקטרוני מחומר מוליך למחצה בעל שתי נקודות חיבור. בשונה מנגד, דיודה אינה סימטרית ביחס לשתי נקודות החיבור שלה. בכיוון אחד זרם אינו יכול לזרום כלל. בכיוון השני זרם יכול לזרום חופשי מעל למתח מסוים. כלומר, הפעלת מתח שלילי על הדיודה תשאיר את הדיודה סגורה. לעומת זאת, הפעלה של מתח חיובי מעל ערך מסוים תגרום לזרימה חופשית. נניח שבקירוב דיודה פתוחה היא קצר (חוט מוליך) ודיודה סגורה היא נתק (חוט מנותק).

כעת נתבונן במעגל הגשר.

%d7%92%d7%a9%d7%a8-%d7%93%d7%99%d7%95%d7%93%d7%95%d7%aa
איור 4: גשר דיודות. חלק עליון – חצי מחזור ראשון, חלק תחתון – חצי מחזור שני. מתח חיובי בכניסה יוצא אותו דבר ומתח שלילי בכניסה מתהפך לחיובי ביציאה. המקורות לאיור: ויקיפדיה וויקיפדיה, לשם הועלה על ידי המשתמש Wykis וטופלה קצת על ידי.

הדיודות מחוברות כך שהמתח הגבוה תמיד יפתח דיודה אחת, המתח הנמוך יפתח דיודה שניה והשתיים האחרות ישארו סגורות.

במקרה הראשון (איור 4 למעלה) נקודת החיבור העליונה במתח גבוה וגורמת לדיודה המסומנת באדום להיפתח. נקודת החיבור התחתונה במתח נמוך וגורמת לדיודה המסומנת בכחול להיפתח. שתי הדיודות האחרות סגורות. דיודה פתוחה היא כמו חוט מוליך ולכן המתח ביציאה הוא בקוטביות זהה לכניסה, גבוה למעלה ונמוך למטה.

כאשר הכניסה בקוטביות הפוכה (איור 4 למטה), כלומר מתח נמוך בנקודה העליונה וגבוה בתחתונה הדיודות שהיו פתוחות נסגרות ואלה שהיו סגורות נפתחות. כפי שניתן לראות באיור, הדיודות הפתוחות כעת גורמות לכך שעדיין המתח הגבוה בנקודת היציאה העליונה והנמוך בתחתונה.

השורה התחתונה היא שמתח חיובי יוצא חיובי ומתח שלילי יוצא חיובי אך שומר על צורתו (ראו איור 5).

%d7%9e%d7%aa%d7%97-%d7%9e%d7%99%d7%95%d7%a9%d7%a8
איור 5: מתח חילופין בכניסה ומתח מיושר ביציאה. המקור לאיור: ויקיפדיה, לשם הועלה על ידי המשתמש Jjbeard וטופלה קצת על ידי.

***

כעת יש לנו מתח מיושר (כיוון הזרם קבוע) אך הוא עדיין לא מתח ישר (ערכו משתנה בזמן). כדי לקבל מתח קבוע בזמן משתמשים בקבל, מין דלי שאוגר בתוכו מטענים חשמליים ולכן אנרגיה חשמלית בצורת מתח חשמלי בין שני הדקיו. הקבל נבחר כך שזמן הפריקה שלו ארוך ביחס לזמן המחזור של תנודת המתח. כאשר המתח עליו גבוה הוא נטען, וכאשר הוא נמוך הוא נפרק. בגלל זמן הפריקה הארוך הוא לא מספיק להגיע למתח נמוך ולכן מבצע תנודות רק במתחים גבוהים. שלב זה משאיר אותנו עם מתח כמעט קבוע שעליו אדוות של שינוי.

הרכיב האחרון הוא מווסת מתח (voltage regulator) שתפקידו להחליק את האדוות. מכיוון שהמימוש הספציפי של רכיב זה תלוי בהספקים ובמתחים הדרושים אני לא ארחיב עליו. אחד הפתרונות הוא לשים דיודת זנר במתח הפוך. מעל למתח מסוים הדיודה נפרצת בכיוון אחורי ונפילת המתח עליה קבועה ויציבה. ניתן להשתמש בתופעה זאת כמייצב מתח, כאשר המתח הקבוע ביציאה הוא נפילת המתח על הדיודה הפרוצה בכיוון אחורי.

***

נסכם את כל השלבים באיור הבא:

%d7%93%d7%99%d7%90%d7%92%d7%a8%d7%9e%d7%aa-%d7%91%d7%9c%d7%95%d7%a7%d7%99%d7%9d-%d7%a9%d7%9c-%d7%a1%d7%a4%d7%a7-%d7%9e%d7%aa%d7%97
איור 6: דיאגרמת בלוקים שמתארת את מקור המתח מנקודת החיבור לרשת החשמל ועד לאספקת המתח הישר לעומס. בכל שלב מוצב אות המתח בגרף בצורה סכמטית.

הסיבה ששנאים, מטענים וספקי מתח הם בעלי משקל כבד היא כי הם מכילים ליפופים רבים סביב ליבה מאסיבית ברכיב השנאי. המטענים מהדור החדש שטוענים לכולנו את הטלפון הסלולרי עובדים בשיטה מעט שונה שבה יש שימוש בהמרה לתדרים גבוהים שמאפשרת שימוש במספר ליפופים קטן יותר על ליבות קטנות באופן משמעותי. אבל זה סיפור לרשימה נפרדת.

זהו.

מראה מראה שעל הקיר, מי הכי מחזירה בעיר? על מראה דיאלקטרית

מה אתם רואים כאשר אתם מביטים במראה? את הבבואה שלכם.

מה הייתם רואים אילולי היתה המראה תלויה על הקיר מולכם? את הקיר.

במילים אחרות, מה שאתם בעצם רואים זה אור שהגיע ממקור כלשהו (שמש, מנורה וכדומה) פגע בכם, יצא מכם, פגע במראה וחזר באופן מסודר לעין שלכם שם הפעיל חיישנים של אור שהמידע שהתקבל על ידם עוּבד במוח לתמונה מנטלית שהיא מה שאתם 'רואים'.

הקיר בולע חלק גדול מהאור ואת השאר מחזיר באופן לא מסודר.
[הערת שוליים 1: החזרה מסודרת מתאפיינת למשל בכך שאור שפוגע במשטח בזווית כלשהי, מוחזר ממנו באותה הזווית. בהחזרה לא מסודרת האור מפוזר לכל הכיוונים בצורה אקראית.]

mirror
תמונה 1: כד משתקף במראה. המקור לתמונה: ויקיפדיה, לשם הועלתה על ידי המשתמש Cgs.

איך מייצרים מראות כך שהאור יוחזר מהן בצורה רצויה? בעבר מראות יוצרו על ידי ליטוש אבל כיום יש שיטה הרבה יותר יעילה. לוקחים משטח שקוף וחלק, למשל זכוכית, ומצפים את אחד הצדדים שלו בשכבה של חומר מתכתי. סוג ותכונות החומר המתכתי יקבעו את איכות ההחזרה בצבעים שונים. ציפוי אלומיניום, למשל, מחזיר כ-90% מהאור בכל הצבעים הנראים. כסף, לעומת זאת, מחזיר טוב יותר ברוב הצבעים (95-99%) אבל בכחול מחזיר פחות טוב (פחות מ-90%).

אז מראות רגילות מחזירות אור בצורה מסודרת ובאחוזים גבוהים, אבל גבוה הוא לא תמיד מספיק גבוה. ישנם יישומים מדעיים וטכנולוגיים בהם 99% זה קטסטרופה. מה אז? ישנה דרך לקבל החזרה טובה אפילו יותר מ- 99.99% מהאור, אבל יש לזה מחיר.

איך זה עובד ומהו המחיר? בהמשך.

ראשית נתחיל בהתחלה, וההתחלה הפעם היא במקום לא צפוי.

***

פולס על חבל

נניח שאתם אוחזים בקצהו של חבל ארוך שקצהו השני מעוגן לקיר. משיכה מהירה של קצה החבל ימינה והחזרתו למקומו המקורי מייצרת פולס (חלק של החבל שלא נמצא על הקו הישר) שנע לאורך החבל הלוך ושוב. שימו לב שהמולקולות שמרכיבות את החבל אינן נעות לאורך החבל. הדבר היחיד שנע לאורך החבל הוא הפולס (ראו שניות 00:32-01:07 בסרטון 2). בדומה, כאשר עובר גל מקסיקני במגרש כדורגל, הצופים אינם מחליפים מקום ישיבה במגרש. מה שזז הוא הפולס, כלומר אילו מהצופים מתרומם ומריע בכל רגע.

סרטון 2: פולסים נעים הלוך וחזור על גבי קפיץ (בין שניות 00:32-01:07). הסרטון המלא מציג מורה לפיזיקה שחוקר ביחד עם כיתתו פולסים שנעים על גבי חבל שבעצמו נע. שווה הצצה.

אם התאום המרושע שלי עומד רחוק ממני אך צמוד לחבל אוכל לסטור לו על ידי שליחת פולס לאורך החבל. כאשר הפולס יגיע אליו, חלקי חבל יצאו מהקו הישר (שיווי המשקל), יפגעו בפניו של התאום ויכאיבו לו. כלומר, הצלחתי להעביר אנרגיה (ותנע) לאורך החבל מבלי להעביר חומר שיישא אותה עליו. לדבר הזה אנחנו קוראים גל.

דבר נוסף שאני יכול לעשות הוא להסית את קצה החבל משיווי משקל בקצב קבוע. סדרה של פולסים, ימינה ושמאלה, תצא מקצה אחד של החבל במרווחים שווים ותנוע לאורכו, אחד אחרי השני (ראו איור 3). לדבר הזה אנחנו קוראים גל מחזורי, וניתן לאפיין אותו על ידי מספר תכונות. מהירות ההתקדמות של הפולסים לאורך התווך (כלומר החבל), תדירות (קצב הופעת הפולסים מהמקור) ואורך הגל (המרחק הקבוע בין שתי נקודות זהות על גבי המחזור). התדירות נקבעת על ידי המקור, המהירות על ידי תכונות התווך ואורך הגל על ידי השניים הראשונים.

%d7%a4%d7%95%d7%9c%d7%a1%d7%99%d7%9d-%d7%9e%d7%aa%d7%a7%d7%93%d7%9e%d7%99%d7%9d-%d7%a2%d7%9c-%d7%97%d7%91%d7%9cאיור 3: מבט על על יד שמנענעת קצה של חבל וגורמת לגל להתקדם על גבי החבל. הפולסים 'מרובעים' כי זה מה שיש ביכולתי לצייר בזמן סביר.

התאבכות

מה קורה כאשר שני פולסים 'פוגשים' אחד את השני על החבל? ההשפעה של שניהם מתחברת (מכונה בעגה: סופרפוזיציה). נבחן נקודה בודדת על החבל. אם בנקודה זאת פיסת החבל היתה אמור לסטות משיווי משקל בסנטימטר אחד עקב פולס א' ובאותו הרגע גם בשני סנטימטרים עקב פולס ב', היא תסטה בשלושה סנטימטרים. מאותה סיבה, אם הנקודה היתה אמורה לסטות בסנטימטר ימינה עקב פולס א' ובשני סנטימטר שמאלה עקב פולס ב', היא תסטה סנטימטר שמאלה. לאחר שהפולסים חלפו אחד על פני השני וכבר אינם חופפים במרחב, הם חוזרים לצורתם המקורית.

אם כך, כאשר שני פולסים זהים נפגשים על גבי חבל הם יתחברו אם הם בכיוון סטיה זהה (במופע זהה) ויתחסרו אם הם במופע הפוך. מסקנה נוספת היא ששני גלים מחזוריים זהים שנעים באותו כיוון ואחד מוסט ביחס לשני באורך גל שלם יחזקו אחד את השני, דבר המכונה 'התאבכות בונה' (ראו איור 4, שמאל). שני גלים מחזוריים זהים שנעים באותו כיוון ומוסטים אחד ביחס לשני בחצי אורך גל 'יעלימו' אחד את השני, דבר המכונה 'התאבכות הורסת' (ראו איור 4, ימין).

%d7%94%d7%aa%d7%90%d7%91%d7%9b%d7%95%d7%aa
איור 4: התאבכות בין שני גלים. משמאל שני גלים המוסטים אחד ביחס לשני בכפולה כלשהי של אורך גל שלם ולכן עוברים התאבכות בונה. מימין שני גליה המוסטים אחד ביחס לשני בכפולות של חצי אורך גל ולכן עוברים התאבכות הורסת. המקור לאיור: ויקיפדיה, לשם הועלה ועובד על ידי המשתמשים Haade, Wjh31, Quibik, עם כותרות שלי בעברית.

מעבר תווך של גלים

מה קורה כאשר פולס על חבל מגיע לקצה תווך, כלומר לקיר? הוא יוחזר חזרה בכיוון ההפוך, אבל באיזה צורה? לשאלה הזאת יש שתי תשובות שתלויות האם הקצה מקובע או שהוא חופשי לנוע. כדי לייצר את המקרה הראשון פשוט נעגן את הקצה השני לקיר. את המקרה השני נקבל למשל אם בקצה החבל יש טבעת שמושחלת על מוט. הטבעת יכולה לנוע לאורך המוט ובניצב לחבל (מחוץ לשיווי משקל) אך לא קדימה ואחורה לאורך החבל.

מסתבר שכאשר פולס מגיע לקצה קשור הוא חוזר בצורה הפוכה ממה שהוא הגיע. הסיבה לכך היא שתנאי השפה מכתיבים שחיבור הגלים בנקודה הקשורה חייב לצאת אפס, ללא תלות במצבו של הגל הפוגע. אם כך, פולס שמאלי חוזר מימין ולהפך (ראו איור 5א ו-5ב). הדבר מכונה בעגה 'היפוך מופע' או 'היפוך פאזה'. אם הקצה חופשי, הפולס חוזר באותה צורה שהוא הגיע. כלומר, פולס שמאלי חוזר משמאל ופולס ימני חוזר מימין, ללא היפוך מופע. ניתן לראות את התופעות האלה גם בסרטון 2 למעלה.

שימו לב שהיפוך מופע של גל מחזורי שקול להסטתו בחצי אורך גל, כך שכל מקסימום הופך למינימום וכדומה.

%d7%94%d7%97%d7%96%d7%a8%d7%94-%d7%a9%d7%9c-%d7%a4%d7%95%d7%9c%d7%a1-%d7%9e%d7%a7%d7%99%d7%a8
איור 5: החזרה של פולס מקיר. חלק א' מתאר את הפולס הנע מהיד לכיוון הקיר. חלק ב' מתאר את הפולס החוזר מהקצה קשור לאחר היפוך מופע. חלק ג' מתאר את הפולס החוזר מקצה משוחרר ללא היפוך מופע.

מה קורה כאשר התווך לא מסתיים, אלא משתנה לתווך אחר? לדוגמה, חבל א' קשור בקצהו לחבל ב' ששונה ממנו בתכונותיו. בהגיעו של הפולס לקצה התווך, חלקו יחזור כפולס קטן יותר וחלקו יעבור לחבל השני כפולס קטן יותר. הפולסים בכל תווך מקיימים את תכונות התווך בהם הם נמצאים.

ראשית נציין שכאשר פולס נע על תווך שצפיפות המסה שלו נמוכה (חבל קל) אז מהירות התקדמות הפולס עליו גבוהה. כאשר פולס נע על תווך שצפיפות המסה שלו גבוהה (חבל כבד) אז מהירות התקדמות הפולס עליו נמוכה.

האם הפולסים החוזרים יתהפכו או שלא יתהפכו? שוב נקבל שתי תשובות שתלויות בתנאים. כאשר פולס נע על חבל קל ופוגש חבל כבד הוא חוזר כמו מקצה קשור, כלומר עובר היפוך מופע (ראו איור 6, שמאל). כאשר פולס נע על חבל כבד ופוגש חבל קל הוא חוזר כמו מקצה משוחרר, כלומר אינו עובר היפוך מופע (ראו איור 6, ימין). הפולס שעובר לתווך השני לעולם לא עובר היפוך מופע.

%d7%a4%d7%95%d7%9c%d7%a1-%d7%91%d7%9e%d7%a2%d7%91%d7%a8-%d7%aa%d7%95%d7%95%d7%9a
איור 6: התנהגות פולס במעבר תווך. (1) משמאל פולס נע בחבל קל, פוגש חבל כבד ומוחזר עם היפוך מופע. (2) מימין פולס נע בחבל כבד, פוגש חבל קל וחוזר ללא היפוך מופע. לא הקפדתי על הקטנת הפולסים לאחר מעבר התווך. אתם תסלחו לי, נכון?

אוקיי, אז איך בשם כל השדים והרוחות קשור כל זה למראה?!

***

אור הוא גל

אז מסתבר שהאור שאנחנו רואים הוא בעצם גל אלקטרומגנטי באורכי גל שבין 400 ל-700 ננומטר. עסקתי בעבר בשאלה מהו אור ומה התווך בו הוא נע. מה שחשוב לנו כרגע הוא שאור הוא גל וככזה מתנהג כמו פולס או גל מחזורי על גבי חבל.

כאשר גל אור עובר מתווך אחד למשנהו, למשל מאוויר לזכוכית, חלק מהגל עובר וחלק מוחזר. אחוז ההחזרה הוא כמובן נמוך כאשר האור פוגע בניצב למשטח של חומר שקוף (כלומר עם בליעת אור מועטת). מבחינת האור, ההבדל בין תווך שקוף אחד למשנהו נובע ממהירות התקדמות הגל בתוכם. בואקום נע האור במהירות האור, במים נע לאט יותר פי 1.33 ובזכוכית פי 1.5. בדומה להחזרות על גבי החבל, כאשר אור נע בתווך איטי ופוגש מהיר, הוא מוחזר ללא היפוך מופע. כאשר האור נע בתווך מהיר ופוגש איטי הוא חוזר עם היפוך מופע. לדוגמה, אור שנע באוויר, פוגע בזכוכית ומוחזר יעבור היפוך מופע, אך אור שנע בזכוכית ופוגע באוויר (בקצה הזכוכית) יחזור ללא היפוך מופע.

כעת באה קומבינה מס' 1

נניח שיש לנו שכבת זכוכית שקופה שאותה נצפה בשכבה שקופה מחומר אחר שבו מהירות התקדמות האור נמוכה יותר מזו שבזכוכית. נדאג שעובי שכבת הציפוי תהיה רבע אורך גל, כלומר שאורכו של מחזור שלם של הגל הוא פי 4 מעובי השכבה. אור שמגיע בכיוון ניצב מהאוויר פוגע בגבול אוויר-ציפוי, רובו עובר לציפוי וחלקו הקטן מוחזר לאוויר עם היפוך פאזה. החלק שעבר פוגע בגבול ציפוי-זכוכית, רובו עובר לזכוכית וחלקו הקטן מוחזר לציפוי ללא היפוך פאזה ואז רובו יוצא החוצה לאוויר. גל האור שהוחזר לאוויר וגל האור שיצא לאוויר מתוך שכבת הציפוי מתחברים אחד עם השני. הראשון עבר היפוך מופע עקב ההחזרה. השני לא עבר היפוך אבל צבר פיגור של חצי אורך גל עקב המסע הלוך ושוב בתוך הציפוי (ראו איור 7). אם כך, גלי האור שחוזרים מהשכבות עוברים התאבכות בונה וגל האור המוחזר חזק יותר ביחס למקרה שבו אין ציפוי. כלומר, הוספת הציפוי הגדילה את כמות האור המוחזר.

%d7%94%d7%a9%d7%a4%d7%a2%d7%aa-%d7%a9%d7%9b%d7%91%d7%aa-%d7%a8%d7%91%d7%a2-%d7%90%d7%95%d7%a8%d7%9a-%d7%92%d7%9c
איור 7: השפעת שכבת רבע אורך גל על החזרות. באיור מוצגות שתי החזרות. אחת מגבול אוויר ציפוי שעוברת היפוך מופע ושניה מגבול ציפוי-זכוכית שלא עוברת היפוך מופע אך צוברת פיגור של חצי אורך גל. שתי ההחזרות עוברות התאבכות בונה באוויר בדרכן אל העין שלנו.

[הערת שוליים 2: בהסבר אני מתעלם מהחזרות פנימיות מסדר גבוה יותר. ניתן לסכום את התרומות ההולכות וקטנות ולראות שהכול עדיין מסתדר.]

כעת באה קומבינה מס' 2

ההחזרה בעקבות הוספת הציפוי מוגברת, אך היא נמוכה מלכתחילה. כדי להגביר את האפקט נרצה להוסיף עוד ועוד שכבות של ציפוי שיחזירו עוד ועוד מהאור באותה צורה. אך על כל שכבת ציפוי אנחנו צריכים להוסיף גם שכבת מצע של זכוכית. תפקידה של הזכוכית, מלבד היותה המצע לשכבות הציפוי, יהיה כעת לגרום להעברה מקסימלית של אור הלאה. בדיוק הפוך מתפקידה של שכבת מראה. 'הקסם' הוא שאם נבחר את עובי שכבת המצע להיות רבע אורך גל היא תייצר בדיוק אפקט הפוך לשכבת הציפוי ותעביר את כל האור. למעשה מדובר בדיוק באותו תרגיל כמו מקודם רק שהפעם סדר השכבות וההחזרות הפוך כך שגלי האור המתחברים מחוץ לזכוכית עוברים התאבכות הורסת (ראו פירוט באיור 8). אם הגלים החוזרים הורסים אחד את השני, זה אומר שכל האור בעצם עובר הלאה. בדיוק בעיקרון הזה נעשה שימוש בציפויים נגד החזרות על עדשות משקפיים (Anti-reflective coating).

anti-reflection-coating
איור 8: ציפוי למניעת החזרות. באיור מוצגות שתי החזרות. אחת מגבול אוויר ציפוי שעוברת היפוך מופע ושניה מגבול ציפוי-זכוכית שגם עוברת היפוך מופע וגם צוברת פיגור של חצי אורך גל ולכן סה"כ מוזזת באורך גל שלם. שתי ההחזרות עוברות התאבכות הורסת באוויר בדרכן אל העין שלנו, כלומר אין החזרות.

השורה התחתונה היא שכל זוג שכבות שנוסיף, זכוכית-מצע וציפוי, שתיהן בעובי רבע אורך גל, יגבירו את אחוז ההחזרה. נוכל להוסיף עד ועוד שכבות עד לקבלת החזרה גבוהה הרבה יותר מזו של מראות מתכת. מכיוון שמדובר באורכי גל מאוד קצרים, עובי המבנה כולו נשאר דק מאוד. המבנה הזה מכונה בעגה: מראה דיאלקטרית (Dielectric mirror או Distributed Bragg reflector).
[הערת שוליים 3: לבעלי הכרות מוקדמת עם החומר אעיר שהמבנה הוא בעצם Photonic crystal חד מימדי.]
[הערת שוליים 4: לא מובטח לי שהגלים המתחברים מחוץ לשכבות הם זהים (מבחינת עוצמת התנודה) ולכן ההתאבכות, בונה או הורסת, אינה מושלמת. בד"כ רצוי ראשית לחשב את מהירות התקדמות האור הדרושה בשכבת הציפוי לקבלת תוצאות אופטימליות (בעיקר בציפוי anti-reflection) אך לא אעסוק בכך כאן. לבעלי הכרות מוקדמת עם חומר אעיר שהחישוב זהה לתיאום אימפדנסים בקו תמסורת על ידי שנאי רבע אורך גל.]

אז מה המחיר שיש לשלם?

זכרו שעובי השכבות צריך להיות רבע אורך גל. אם כך, המראה שלנו מושלמת, אבל רק עבור אורך גל בודד! אם נדייק, עבור מספר שכבות רב יש טווח של אורכי גל שיוחזרו, אבל טווח זה מוגבל מאוד ביחס למראה רגילה. כיום יודעים לייצר מראות דיאלקטריות לטווח רחב יחסית של אורכי גל אבל הן קטנות בגודלן, יקרות ומשמשות בעיקר למעבדות וליישומים טכנולוגיים עתירי ידע.

אבל מסתבר שלא הכול יקר. יש דברים שנוכל לקבל בחינם. קחו למשל את הפרפר הצבעוני הזה. הצבעים המטאליים של הכנפיים שלו אינם נובעים מפיגמנטים, אלא ממבנה מורכב של שכבות קשקשים שמייצרים מראות דיאלקטריות שמחזירות רק צבעים מסוימים. יש מה ללמוד ממנו.

bluemorphobutterfly
תמונה 9: פרפר מסוג morpho peleides. המקור לתמונה: ויקיפדיה, לשם הועלה על ידי המשתמש Asturnut.

***

תודות לדר. ערן גרינולד על ביאור קושיות ותמיכה מדעית.

כל הטעויות ברשימה הן שלי ועל אחריותי בלבד…