Archive

Posts Tagged ‘טכנולוגיה’

מי הזיז את אבקת החשמל שלי?! על מקורות מתח (אולי חלק א' ואולי לא)

מזמן לא עסקתי בשעון המעורר שלי, אז בואו ונחזור אליו אבל הפעם מהצד האחורי.

כדי שהשעון שלי יפעל הוא צריך 'חשמל'. ישנן שתי דרכים מקובלות לספק לשעונים מעוררים את המתח וזרם החשמלי שלו הם זקוקים כדי לתפקד. האחת היא לחבר אותם לרשת החשמל והשניה היא שימוש בסוללות.

התוצאה הרצויה להפעלת השעון, קרי: אספקת מתח וזרם מתאימים, זהה בשתי השיטות, אבל הדרך להגיע לשם שונה בתכלית.

ברשימה זאת אעסוק בספק מתח המחובר לרשת החשמל. אולי בהמשך אכתוב על סוללות (בלי נדר).

picture1
תמונה 1: שעון דיגיטלי.

***

מה בעצם מגיע אלינו דרך שקע החשמל בקיר?

הפרש בפוטנציאל החשמלי בין שתי נקודות מכונה בעגה 'מתח חשמלי'. אם שתי נקודות שביניהן שורר מתח, מחוברות זו לזו על ידי מוליך, יחל לזרום זרם חשמלי מפוטנציאל גבוה לנמוך, בדומה למים שזורמים מנקודה גבוהה לנמוכה.

חברת החשמל דואגת שבין שני החורים שבשקע החשמל בקיר תמיד יהיה מתח. כמו כן, היא דואגת שאם נסגור מעגל בין שני החורים יזרום זרם.

אם נכפיל את כמות הזרם בכמות המתח נקבל את ההספק החשמלי שנמדד ביחידות 'וואט' וערכו רשום על כל מכשיר חשמלי שאנחנו קונים. ההספק הוא כמות האנרגיה המתבזבזת בכל שניה (כלומר מומרת מאנרגיה פוטנציאלית חשמלית למשל לחום, כמו בטוסטר משולשים). אם נכפיל את ההספק של מכשיר חשמלי בזמן שהוא פעל נקבל את סך האנרגיה שהתבזבזה בזמן זה, וזה חשבון החשמל שאנחנו משלמים (נמדד בקילו-וואט כפול שעה, הספק כפול זמן).

כדי לייצר מתח חשמלי צריך לעבוד קשה, ואת זה עושות הטורבינות בתחנות הכוח של חברת החשמל. המתח המיוצר בתחנות הוא מתח חילופין (ערכו משתנה באופן מחזורי) בעוצמה גבוהה מאוד (כ-400 קילו-וולט). חשמל במתח גבוה ניתן להוביל בזרם נמוך ובכך להקטין באופן משמעותי את בזבוז האנרגיה על קווי המתח הגבוה שמובילים אותו לאורכה ולרוחבה של המדינה.

%d7%a2%d7%9e%d7%95%d7%93%d7%99-%d7%97%d7%a9%d7%9e%d7%9c
תמונה 2: עמודי חשמל ליד נחל הבשור. המקור לתמונה: ויקיפדיה, לשם הועלתה על ידי המשתמש אורן פלס.

בשקע החשמל בדירה אין צורך במתח גבוה כל כך, ובכל מקרה ההובלה הסתיימה ולכן המתח בשקע הוא רק 220 וולט חילופין. לפני הכניסה לדירה ערכו של המתח הורד על ידי חברת החשמל, אך תלאותיו של החשמל עדיין לא הסתיימו. השעון המעורר זקוק לתפעולו למתח חשמלי ישר (שאינו משתנה) שערכו וולטים בודדים, ויישרף אם יחובר ישירות למתח הרשת. כאן נכנס המכשיר שאנחנו נוטים לכנות 'שנאי' או 'טרנספורמטור', אבל הוא בעצם מתאם מזרם חילופין למתח נמוך וקבוע (AC to DC adapter). המתאם אכן מכיל בתוכו רכיב המכונה שנאי אך גם רכיבים נוספים.

***

מהו שנאי (אידיאלי)?

המקור של שדה מגנטי הוא תנועה של מטענים חשמליים.

עובדה 1: כאשר מזרימים זרם חשמלי דרך תיל מוליך, נוצר שדה מגנטי סביב התיל שכיוונו משיק למעגלים קונצנטריים סביב התיל במרכז. אם נלפף את התיל לצורת סליל (מכונה לפעמים סילונית) כיוון השדה המגנטי בתוך הסליל יהיה בקירוב ישר לאורכו. עוצמת השדה תלויה בצפיפות הליפופים.

עובדה2: אם נלפף את הסליל המדובר סביב ליבת ברזל בצורת טבעת ונזרים דרכו זרם, שטף השדה המגנטי ילכד ויובל לאורכה של הטבעת.

עובדה 3: אם עובר דרך סילונית שטף משתנה בזמן של שדה מגנטי הוא גורם להתעוררות של זרם משתנה בזמן דרך תיל המלופף סביבה. עוצמתו של הזרם תלויה בצפיפות הליפופים.

אם כך, נוכל ללפף על שני צידי טבעת ברזל (מכונה הליבה) שני סלילים שונים, עם צפיפות ליפופים שונה (ראו איור 3). על סליל אחד נשים מתח חשמלי משתנה בזמן שיגרום לזרם חשמלי משתנה בזמן שיגרום לשטף שדה מגנטי משתנה בזמן בתוך הסילונית (עובדה 1) וכן לאורך הטבעת (עובדה 2) שיעבור גם דרך הסילונית השניה ויעורר בה זרם חשמלי משתנה בזמן (עובדה 3). עוצמה הזרם בסליל השני תהיה תלויה ביחס כמות הליפופים בין שני הסלילים, ולכן יתקבל מתח חשמלי שונה בין שני צידי הטבעת. כלומר, טבעת הברזל ושני הסלילים המלופפים סביבה משמשים לשינוי עוצמת המתח החשמלי כתלות ביחס מספר הליפופים. גם חברת החשמל משתמשת בשנאים כדי להקטין את המתח לאורך הרשת.

%d7%a9%d7%a0%d7%90%d7%99-%d7%90%d7%99%d7%93%d7%99%d7%90%d7%9c%d7%99
איור 3: סכימה של שנאי אידיאלי. המקור לאיור: ויקיפדיה, לשם הועלה על ידי המשתמש BillC.

***

פתרנו את בעיית עוצמת המתח, אך אנחנו עדיין תקועים עם מתח חילופין במקום מתח ישר ולכן הרכיב הבא הוא מישר זרם.

זרם חילופין שיוצא מהשקע בקיר משנה את כיוונו כ-50 פעם בשניה. תפקידו של המיישר הוא לגרום לזרם לזרום רק בכיוון אחד. את זאת נשיג על ידי שימוש בגשר דיודות.

דיודה היא רכיב אלקטרוני מחומר מוליך למחצה בעל שתי נקודות חיבור. בשונה מנגד, דיודה אינה סימטרית ביחס לשתי נקודות החיבור שלה. בכיוון אחד זרם אינו יכול לזרום כלל. בכיוון השני זרם יכול לזרום חופשי מעל למתח מסוים. כלומר, הפעלת מתח שלילי על הדיודה תשאיר את הדיודה סגורה. לעומת זאת, הפעלה של מתח חיובי מעל ערך מסוים תגרום לזרימה חופשית. נניח שבקירוב דיודה פתוחה היא קצר (חוט מוליך) ודיודה סגורה היא נתק (חוט מנותק).

כעת נתבונן במעגל הגשר.

%d7%92%d7%a9%d7%a8-%d7%93%d7%99%d7%95%d7%93%d7%95%d7%aa
איור 4: גשר דיודות. חלק עליון – חצי מחזור ראשון, חלק תחתון – חצי מחזור שני. מתח חיובי בכניסה יוצא אותו דבר ומתח שלילי בכניסה מתהפך לחיובי ביציאה. המקורות לאיור: ויקיפדיה וויקיפדיה, לשם הועלה על ידי המשתמש Wykis וטופלה קצת על ידי.

הדיודות מחוברות כך שהמתח הגבוה תמיד יפתח דיודה אחת, המתח הנמוך יפתח דיודה שניה והשתיים האחרות ישארו סגורות.

במקרה הראשון (איור 4 למעלה) נקודת החיבור העליונה במתח גבוה וגורמת לדיודה המסומנת באדום להיפתח. נקודת החיבור התחתונה במתח נמוך וגורמת לדיודה המסומנת בכחול להיפתח. שתי הדיודות האחרות סגורות. דיודה פתוחה היא כמו חוט מוליך ולכן המתח ביציאה הוא בקוטביות זהה לכניסה, גבוה למעלה ונמוך למטה.

כאשר הכניסה בקוטביות הפוכה (איור 4 למטה), כלומר מתח נמוך בנקודה העליונה וגבוה בתחתונה הדיודות שהיו פתוחות נסגרות ואלה שהיו סגורות נפתחות. כפי שניתן לראות באיור, הדיודות הפתוחות כעת גורמות לכך שעדיין המתח הגבוה בנקודת היציאה העליונה והנמוך בתחתונה.

השורה התחתונה היא שמתח חיובי יוצא חיובי ומתח שלילי יוצא חיובי אך שומר על צורתו (ראו איור 5).

%d7%9e%d7%aa%d7%97-%d7%9e%d7%99%d7%95%d7%a9%d7%a8
איור 5: מתח חילופין בכניסה ומתח מיושר ביציאה. המקור לאיור: ויקיפדיה, לשם הועלה על ידי המשתמש Jjbeard וטופלה קצת על ידי.

***

כעת יש לנו מתח מיושר (כיוון הזרם קבוע) אך הוא עדיין לא מתח ישר (ערכו משתנה בזמן). כדי לקבל מתח קבוע בזמן משתמשים בקבל, מין דלי שאוגר בתוכו מטענים חשמליים ולכן אנרגיה חשמלית בצורת מתח חשמלי בין שני הדקיו. הקבל נבחר כך שזמן הפריקה שלו ארוך ביחס לזמן המחזור של תנודת המתח. כאשר המתח עליו גבוה הוא נטען, וכאשר הוא נמוך הוא נפרק. בגלל זמן הפריקה הארוך הוא לא מספיק להגיע למתח נמוך ולכן מבצע תנודות רק במתחים גבוהים. שלב זה משאיר אותנו עם מתח כמעט קבוע שעליו אדוות של שינוי.

הרכיב האחרון הוא מווסת מתח (voltage regulator) שתפקידו להחליק את האדוות. מכיוון שהמימוש הספציפי של רכיב זה תלוי בהספקים ובמתחים הדרושים אני לא ארחיב עליו. אחד הפתרונות הוא לשים דיודת זנר במתח הפוך. מעל למתח מסוים הדיודה נפרצת בכיוון אחורי ונפילת המתח עליה קבועה ויציבה. ניתן להשתמש בתופעה זאת כמייצב מתח, כאשר המתח הקבוע ביציאה הוא נפילת המתח על הדיודה הפרוצה בכיוון אחורי.

***

נסכם את כל השלבים באיור הבא:

%d7%93%d7%99%d7%90%d7%92%d7%a8%d7%9e%d7%aa-%d7%91%d7%9c%d7%95%d7%a7%d7%99%d7%9d-%d7%a9%d7%9c-%d7%a1%d7%a4%d7%a7-%d7%9e%d7%aa%d7%97
איור 6: דיאגרמת בלוקים שמתארת את מקור המתח מנקודת החיבור לרשת החשמל ועד לאספקת המתח הישר לעומס. בכל שלב מוצב אות המתח בגרף בצורה סכמטית.

הסיבה ששנאים, מטענים וספקי מתח הם בעלי משקל כבד היא כי הם מכילים ליפופים רבים סביב ליבה מאסיבית ברכיב השנאי. המטענים מהדור החדש שטוענים לכולנו את הטלפון הסלולרי עובדים בשיטה מעט שונה שבה יש שימוש בהמרה לתדרים גבוהים שמאפשרת שימוש במספר ליפופים קטן יותר על ליבות קטנות באופן משמעותי. אבל זה סיפור לרשימה נפרדת.

זהו.

מראה מראה שעל הקיר, מי הכי מחזירה בעיר? על מראה דיאלקטרית

מה אתם רואים כאשר אתם מביטים במראה? את הבבואה שלכם.

מה הייתם רואים אילולי היתה המראה תלויה על הקיר מולכם? את הקיר.

במילים אחרות, מה שאתם בעצם רואים זה אור שהגיע ממקור כלשהו (שמש, מנורה וכדומה) פגע בכם, יצא מכם, פגע במראה וחזר באופן מסודר לעין שלכם שם הפעיל חיישנים של אור שהמידע שהתקבל על ידם עוּבד במוח לתמונה מנטלית שהיא מה שאתם 'רואים'.

הקיר בולע חלק גדול מהאור ואת השאר מחזיר באופן לא מסודר.
[הערת שוליים 1: החזרה מסודרת מתאפיינת למשל בכך שאור שפוגע במשטח בזווית כלשהי, מוחזר ממנו באותה הזווית. בהחזרה לא מסודרת האור מפוזר לכל הכיוונים בצורה אקראית.]

mirror
תמונה 1: כד משתקף במראה. המקור לתמונה: ויקיפדיה, לשם הועלתה על ידי המשתמש Cgs.

איך מייצרים מראות כך שהאור יוחזר מהן בצורה רצויה? בעבר מראות יוצרו על ידי ליטוש אבל כיום יש שיטה הרבה יותר יעילה. לוקחים משטח שקוף וחלק, למשל זכוכית, ומצפים את אחד הצדדים שלו בשכבה של חומר מתכתי. סוג ותכונות החומר המתכתי יקבעו את איכות ההחזרה בצבעים שונים. ציפוי אלומיניום, למשל, מחזיר כ-90% מהאור בכל הצבעים הנראים. כסף, לעומת זאת, מחזיר טוב יותר ברוב הצבעים (95-99%) אבל בכחול מחזיר פחות טוב (פחות מ-90%).

אז מראות רגילות מחזירות אור בצורה מסודרת ובאחוזים גבוהים, אבל גבוה הוא לא תמיד מספיק גבוה. ישנם יישומים מדעיים וטכנולוגיים בהם 99% זה קטסטרופה. מה אז? ישנה דרך לקבל החזרה טובה אפילו יותר מ- 99.99% מהאור, אבל יש לזה מחיר.

איך זה עובד ומהו המחיר? בהמשך.

ראשית נתחיל בהתחלה, וההתחלה הפעם היא במקום לא צפוי.

***

פולס על חבל

נניח שאתם אוחזים בקצהו של חבל ארוך שקצהו השני מעוגן לקיר. משיכה מהירה של קצה החבל ימינה והחזרתו למקומו המקורי מייצרת פולס (חלק של החבל שלא נמצא על הקו הישר) שנע לאורך החבל הלוך ושוב. שימו לב שהמולקולות שמרכיבות את החבל אינן נעות לאורך החבל. הדבר היחיד שנע לאורך החבל הוא הפולס (ראו שניות 00:32-01:07 בסרטון 2). בדומה, כאשר עובר גל מקסיקני במגרש כדורגל, הצופים אינם מחליפים מקום ישיבה במגרש. מה שזז הוא הפולס, כלומר אילו מהצופים מתרומם ומריע בכל רגע.

סרטון 2: פולסים נעים הלוך וחזור על גבי קפיץ (בין שניות 00:32-01:07). הסרטון המלא מציג מורה לפיזיקה שחוקר ביחד עם כיתתו פולסים שנעים על גבי חבל שבעצמו נע. שווה הצצה.

אם התאום המרושע שלי עומד רחוק ממני אך צמוד לחבל אוכל לסטור לו על ידי שליחת פולס לאורך החבל. כאשר הפולס יגיע אליו, חלקי חבל יצאו מהקו הישר (שיווי המשקל), יפגעו בפניו של התאום ויכאיבו לו. כלומר, הצלחתי להעביר אנרגיה (ותנע) לאורך החבל מבלי להעביר חומר שיישא אותה עליו. לדבר הזה אנחנו קוראים גל.

דבר נוסף שאני יכול לעשות הוא להסית את קצה החבל משיווי משקל בקצב קבוע. סדרה של פולסים, ימינה ושמאלה, תצא מקצה אחד של החבל במרווחים שווים ותנוע לאורכו, אחד אחרי השני (ראו איור 3). לדבר הזה אנחנו קוראים גל מחזורי, וניתן לאפיין אותו על ידי מספר תכונות. מהירות ההתקדמות של הפולסים לאורך התווך (כלומר החבל), תדירות (קצב הופעת הפולסים מהמקור) ואורך הגל (המרחק הקבוע בין שתי נקודות זהות על גבי המחזור). התדירות נקבעת על ידי המקור, המהירות על ידי תכונות התווך ואורך הגל על ידי השניים הראשונים.

%d7%a4%d7%95%d7%9c%d7%a1%d7%99%d7%9d-%d7%9e%d7%aa%d7%a7%d7%93%d7%9e%d7%99%d7%9d-%d7%a2%d7%9c-%d7%97%d7%91%d7%9cאיור 3: מבט על על יד שמנענעת קצה של חבל וגורמת לגל להתקדם על גבי החבל. הפולסים 'מרובעים' כי זה מה שיש ביכולתי לצייר בזמן סביר.

התאבכות

מה קורה כאשר שני פולסים 'פוגשים' אחד את השני על החבל? ההשפעה של שניהם מתחברת (מכונה בעגה: סופרפוזיציה). נבחן נקודה בודדת על החבל. אם בנקודה זאת פיסת החבל היתה אמור לסטות משיווי משקל בסנטימטר אחד עקב פולס א' ובאותו הרגע גם בשני סנטימטרים עקב פולס ב', היא תסטה בשלושה סנטימטרים. מאותה סיבה, אם הנקודה היתה אמורה לסטות בסנטימטר ימינה עקב פולס א' ובשני סנטימטר שמאלה עקב פולס ב', היא תסטה סנטימטר שמאלה. לאחר שהפולסים חלפו אחד על פני השני וכבר אינם חופפים במרחב, הם חוזרים לצורתם המקורית.

אם כך, כאשר שני פולסים זהים נפגשים על גבי חבל הם יתחברו אם הם בכיוון סטיה זהה (במופע זהה) ויתחסרו אם הם במופע הפוך. מסקנה נוספת היא ששני גלים מחזוריים זהים שנעים באותו כיוון ואחד מוסט ביחס לשני באורך גל שלם יחזקו אחד את השני, דבר המכונה 'התאבכות בונה' (ראו איור 4, שמאל). שני גלים מחזוריים זהים שנעים באותו כיוון ומוסטים אחד ביחס לשני בחצי אורך גל 'יעלימו' אחד את השני, דבר המכונה 'התאבכות הורסת' (ראו איור 4, ימין).

%d7%94%d7%aa%d7%90%d7%91%d7%9b%d7%95%d7%aa
איור 4: התאבכות בין שני גלים. משמאל שני גלים המוסטים אחד ביחס לשני בכפולה כלשהי של אורך גל שלם ולכן עוברים התאבכות בונה. מימין שני גליה המוסטים אחד ביחס לשני בכפולות של חצי אורך גל ולכן עוברים התאבכות הורסת. המקור לאיור: ויקיפדיה, לשם הועלה ועובד על ידי המשתמשים Haade, Wjh31, Quibik, עם כותרות שלי בעברית.

מעבר תווך של גלים

מה קורה כאשר פולס על חבל מגיע לקצה תווך, כלומר לקיר? הוא יוחזר חזרה בכיוון ההפוך, אבל באיזה צורה? לשאלה הזאת יש שתי תשובות שתלויות האם הקצה מקובע או שהוא חופשי לנוע. כדי לייצר את המקרה הראשון פשוט נעגן את הקצה השני לקיר. את המקרה השני נקבל למשל אם בקצה החבל יש טבעת שמושחלת על מוט. הטבעת יכולה לנוע לאורך המוט ובניצב לחבל (מחוץ לשיווי משקל) אך לא קדימה ואחורה לאורך החבל.

מסתבר שכאשר פולס מגיע לקצה קשור הוא חוזר בצורה הפוכה ממה שהוא הגיע. הסיבה לכך היא שתנאי השפה מכתיבים שחיבור הגלים בנקודה הקשורה חייב לצאת אפס, ללא תלות במצבו של הגל הפוגע. אם כך, פולס שמאלי חוזר מימין ולהפך (ראו איור 5א ו-5ב). הדבר מכונה בעגה 'היפוך מופע' או 'היפוך פאזה'. אם הקצה חופשי, הפולס חוזר באותה צורה שהוא הגיע. כלומר, פולס שמאלי חוזר משמאל ופולס ימני חוזר מימין, ללא היפוך מופע. ניתן לראות את התופעות האלה גם בסרטון 2 למעלה.

שימו לב שהיפוך מופע של גל מחזורי שקול להסטתו בחצי אורך גל, כך שכל מקסימום הופך למינימום וכדומה.

%d7%94%d7%97%d7%96%d7%a8%d7%94-%d7%a9%d7%9c-%d7%a4%d7%95%d7%9c%d7%a1-%d7%9e%d7%a7%d7%99%d7%a8
איור 5: החזרה של פולס מקיר. חלק א' מתאר את הפולס הנע מהיד לכיוון הקיר. חלק ב' מתאר את הפולס החוזר מהקצה קשור לאחר היפוך מופע. חלק ג' מתאר את הפולס החוזר מקצה משוחרר ללא היפוך מופע.

מה קורה כאשר התווך לא מסתיים, אלא משתנה לתווך אחר? לדוגמה, חבל א' קשור בקצהו לחבל ב' ששונה ממנו בתכונותיו. בהגיעו של הפולס לקצה התווך, חלקו יחזור כפולס קטן יותר וחלקו יעבור לחבל השני כפולס קטן יותר. הפולסים בכל תווך מקיימים את תכונות התווך בהם הם נמצאים.

ראשית נציין שכאשר פולס נע על תווך שצפיפות המסה שלו נמוכה (חבל קל) אז מהירות התקדמות הפולס עליו גבוהה. כאשר פולס נע על תווך שצפיפות המסה שלו גבוהה (חבל כבד) אז מהירות התקדמות הפולס עליו נמוכה.

האם הפולסים החוזרים יתהפכו או שלא יתהפכו? שוב נקבל שתי תשובות שתלויות בתנאים. כאשר פולס נע על חבל קל ופוגש חבל כבד הוא חוזר כמו מקצה קשור, כלומר עובר היפוך מופע (ראו איור 6, שמאל). כאשר פולס נע על חבל כבד ופוגש חבל קל הוא חוזר כמו מקצה משוחרר, כלומר אינו עובר היפוך מופע (ראו איור 6, ימין). הפולס שעובר לתווך השני לעולם לא עובר היפוך מופע.

%d7%a4%d7%95%d7%9c%d7%a1-%d7%91%d7%9e%d7%a2%d7%91%d7%a8-%d7%aa%d7%95%d7%95%d7%9a
איור 6: התנהגות פולס במעבר תווך. (1) משמאל פולס נע בחבל קל, פוגש חבל כבד ומוחזר עם היפוך מופע. (2) מימין פולס נע בחבל כבד, פוגש חבל קל וחוזר ללא היפוך מופע. לא הקפדתי על הקטנת הפולסים לאחר מעבר התווך. אתם תסלחו לי, נכון?

אוקיי, אז איך בשם כל השדים והרוחות קשור כל זה למראה?!

***

אור הוא גל

אז מסתבר שהאור שאנחנו רואים הוא בעצם גל אלקטרומגנטי באורכי גל שבין 400 ל-700 ננומטר. עסקתי בעבר בשאלה מהו אור ומה התווך בו הוא נע. מה שחשוב לנו כרגע הוא שאור הוא גל וככזה מתנהג כמו פולס או גל מחזורי על גבי חבל.

כאשר גל אור עובר מתווך אחד למשנהו, למשל מאוויר לזכוכית, חלק מהגל עובר וחלק מוחזר. אחוז ההחזרה הוא כמובן נמוך כאשר האור פוגע בניצב למשטח של חומר שקוף (כלומר עם בליעת אור מועטת). מבחינת האור, ההבדל בין תווך שקוף אחד למשנהו נובע ממהירות התקדמות הגל בתוכם. בואקום נע האור במהירות האור, במים נע לאט יותר פי 1.33 ובזכוכית פי 1.5. בדומה להחזרות על גבי החבל, כאשר אור נע בתווך איטי ופוגש מהיר, הוא מוחזר ללא היפוך מופע. כאשר האור נע בתווך מהיר ופוגש איטי הוא חוזר עם היפוך מופע. לדוגמה, אור שנע באוויר, פוגע בזכוכית ומוחזר יעבור היפוך מופע, אך אור שנע בזכוכית ופוגע באוויר (בקצה הזכוכית) יחזור ללא היפוך מופע.

כעת באה קומבינה מס' 1

נניח שיש לנו שכבת זכוכית שקופה שאותה נצפה בשכבה שקופה מחומר אחר שבו מהירות התקדמות האור נמוכה יותר מזו שבזכוכית. נדאג שעובי שכבת הציפוי תהיה רבע אורך גל, כלומר שאורכו של מחזור שלם של הגל הוא פי 4 מעובי השכבה. אור שמגיע בכיוון ניצב מהאוויר פוגע בגבול אוויר-ציפוי, רובו עובר לציפוי וחלקו הקטן מוחזר לאוויר עם היפוך פאזה. החלק שעבר פוגע בגבול ציפוי-זכוכית, רובו עובר לזכוכית וחלקו הקטן מוחזר לציפוי ללא היפוך פאזה ואז רובו יוצא החוצה לאוויר. גל האור שהוחזר לאוויר וגל האור שיצא לאוויר מתוך שכבת הציפוי מתחברים אחד עם השני. הראשון עבר היפוך מופע עקב ההחזרה. השני לא עבר היפוך אבל צבר פיגור של חצי אורך גל עקב המסע הלוך ושוב בתוך הציפוי (ראו איור 7). אם כך, גלי האור שחוזרים מהשכבות עוברים התאבכות בונה וגל האור המוחזר חזק יותר ביחס למקרה שבו אין ציפוי. כלומר, הוספת הציפוי הגדילה את כמות האור המוחזר.

%d7%94%d7%a9%d7%a4%d7%a2%d7%aa-%d7%a9%d7%9b%d7%91%d7%aa-%d7%a8%d7%91%d7%a2-%d7%90%d7%95%d7%a8%d7%9a-%d7%92%d7%9c
איור 7: השפעת שכבת רבע אורך גל על החזרות. באיור מוצגות שתי החזרות. אחת מגבול אוויר ציפוי שעוברת היפוך מופע ושניה מגבול ציפוי-זכוכית שלא עוברת היפוך מופע אך צוברת פיגור של חצי אורך גל. שתי ההחזרות עוברות התאבכות בונה באוויר בדרכן אל העין שלנו.

[הערת שוליים 2: בהסבר אני מתעלם מהחזרות פנימיות מסדר גבוה יותר. ניתן לסכום את התרומות ההולכות וקטנות ולראות שהכול עדיין מסתדר.]

כעת באה קומבינה מס' 2

ההחזרה בעקבות הוספת הציפוי מוגברת, אך היא נמוכה מלכתחילה. כדי להגביר את האפקט נרצה להוסיף עוד ועוד שכבות של ציפוי שיחזירו עוד ועוד מהאור באותה צורה. אך על כל שכבת ציפוי אנחנו צריכים להוסיף גם שכבת מצע של זכוכית. תפקידה של הזכוכית, מלבד היותה המצע לשכבות הציפוי, יהיה כעת לגרום להעברה מקסימלית של אור הלאה. בדיוק הפוך מתפקידה של שכבת מראה. 'הקסם' הוא שאם נבחר את עובי שכבת המצע להיות רבע אורך גל היא תייצר בדיוק אפקט הפוך לשכבת הציפוי ותעביר את כל האור. למעשה מדובר בדיוק באותו תרגיל כמו מקודם רק שהפעם סדר השכבות וההחזרות הפוך כך שגלי האור המתחברים מחוץ לזכוכית עוברים התאבכות הורסת (ראו פירוט באיור 8). אם הגלים החוזרים הורסים אחד את השני, זה אומר שכל האור בעצם עובר הלאה. בדיוק בעיקרון הזה נעשה שימוש בציפויים נגד החזרות על עדשות משקפיים (Anti-reflective coating).

anti-reflection-coating
איור 8: ציפוי למניעת החזרות. באיור מוצגות שתי החזרות. אחת מגבול אוויר ציפוי שעוברת היפוך מופע ושניה מגבול ציפוי-זכוכית שגם עוברת היפוך מופע וגם צוברת פיגור של חצי אורך גל ולכן סה"כ מוזזת באורך גל שלם. שתי ההחזרות עוברות התאבכות הורסת באוויר בדרכן אל העין שלנו, כלומר אין החזרות.

השורה התחתונה היא שכל זוג שכבות שנוסיף, זכוכית-מצע וציפוי, שתיהן בעובי רבע אורך גל, יגבירו את אחוז ההחזרה. נוכל להוסיף עד ועוד שכבות עד לקבלת החזרה גבוהה הרבה יותר מזו של מראות מתכת. מכיוון שמדובר באורכי גל מאוד קצרים, עובי המבנה כולו נשאר דק מאוד. המבנה הזה מכונה בעגה: מראה דיאלקטרית (Dielectric mirror או Distributed Bragg reflector).
[הערת שוליים 3: לבעלי הכרות מוקדמת עם החומר אעיר שהמבנה הוא בעצם Photonic crystal חד מימדי.]
[הערת שוליים 4: לא מובטח לי שהגלים המתחברים מחוץ לשכבות הם זהים (מבחינת עוצמת התנודה) ולכן ההתאבכות, בונה או הורסת, אינה מושלמת. בד"כ רצוי ראשית לחשב את מהירות התקדמות האור הדרושה בשכבת הציפוי לקבלת תוצאות אופטימליות (בעיקר בציפוי anti-reflection) אך לא אעסוק בכך כאן. לבעלי הכרות מוקדמת עם חומר אעיר שהחישוב זהה לתיאום אימפדנסים בקו תמסורת על ידי שנאי רבע אורך גל.]

אז מה המחיר שיש לשלם?

זכרו שעובי השכבות צריך להיות רבע אורך גל. אם כך, המראה שלנו מושלמת, אבל רק עבור אורך גל בודד! אם נדייק, עבור מספר שכבות רב יש טווח של אורכי גל שיוחזרו, אבל טווח זה מוגבל מאוד ביחס למראה רגילה. כיום יודעים לייצר מראות דיאלקטריות לטווח רחב יחסית של אורכי גל אבל הן קטנות בגודלן, יקרות ומשמשות בעיקר למעבדות וליישומים טכנולוגיים עתירי ידע.

אבל מסתבר שלא הכול יקר. יש דברים שנוכל לקבל בחינם. קחו למשל את הפרפר הצבעוני הזה. הצבעים המטאליים של הכנפיים שלו אינם נובעים מפיגמנטים, אלא ממבנה מורכב של שכבות קשקשים שמייצרים מראות דיאלקטריות שמחזירות רק צבעים מסוימים. יש מה ללמוד ממנו.

bluemorphobutterfly
תמונה 9: פרפר מסוג morpho peleides. המקור לתמונה: ויקיפדיה, לשם הועלה על ידי המשתמש Asturnut.

***

תודות לדר. ערן גרינולד על ביאור קושיות ותמיכה מדעית.

כל הטעויות ברשימה הן שלי ועל אחריותי בלבד…

מלך המתגים – על עקרון הפעולה של טרנזיסטור MOSFET

בחודש הבא יחגוג הבלוג 5 שנים להיווסדו. במילים אחרות, אני כותב פה כבר 5 שנים. פיסת חיים.

%d7%a2%d7%95%d7%92%d7%aa-%d7%99%d7%95%d7%9e%d7%95%d7%9c%d7%93%d7%aa
איור 1: עוגת יומולדת עם 5 נרות. המקור לאיור: clip art מה-powerpoint.

העובדה הזאת גרמה לי לשאול את עצמי האם אני זוכר את כל מה שכתבתי כאן. האם אני אעבור בחינה על החומר שכתוב בבלוג. רמז  לסיכויי ההצלחה שלי במבחן כזה קיבלתי לא מזמן.

תהיתי לעצמי האם כתבתי בעבר הסבר על עקרון הפעולה של טרנזיסטורים. חשבתי שכן, אבל לא הייתי בטוח. האמת המביכה היא שכדי להחליט הייתי צריך לעשות חיפוש באתר של עצמי. גיליתי להפתעתי שמעולם לא כתבתי עליהם, אלא רק כנושא צדדי קצר כדי להסביר משהו אחר, למשל כשסיפרתי על זיכרון פלאש או על מימוש של שערים לוגיים. המצב קשה.

אז כמו שכבר הבנתם הנושא הפעם הוא עיקרון הפעולה של טרנזיסטורים, כאשר אתמקד בסוג שנקרא MOSFET שזה קיצור נפלא לזוועה הבאה: 'Metal-oxide-semiconductor field-effect transistor'. כמו כן אתמקד בפעולה שלו כמתג, מכיוון לדעתי אלה הן הדוגמאות החשובות והפשוטות ביותר.

הרשימה הפעם מעט ארוכה מהרגיל. הסיבה לכך היא הרצון שלי לתת רקע איתן שיאפשר הבנה ללא קשר לידע מוקדם. מהסיבה הזאת הקפדתי להפריד את הרשימה למקטעים שכל אחד מהם מתחיל בשאלה שמתארת היטב מה מטרתו. הקורא יכול לרפרף בנוחות ולבחור לדלג על מקטע שדן בשאלה שאותה הוא כבר מכיר.

***

מהו טרנזיסטור?

לעניינינו, טרנזיסטור הוא מתג חשמלי שביכולתו לווסת זרימת מטענים חשמליים. הטרנזיסטור הוא אבן הבסיס לבניית שערים לוגיים ומכאן לכל יחידות המחשב (מעבד, זיכרון וכולי). מדובר ברכיב חשמלי בעל שלושה חיבורים חיצוניים שאותם נסמן באותיות S,D ו-G שהם קיצור ל-source, drain ו-gate בהתאמה.

נוח לחשוב על הטרנזיסטור כעל ברז ששולט על זרימת מים בצינור, כאשר המים מסמלים זרם חשמלי. בצינור יש לחץ ולכן מים יזרמו דרכו אלא אם כן שמנו מחסום, למשל ברז שחוסם את המעבר. כלומר, פתיחת הברז תשחרר את החסימה ותאפשר את זרימת המים. הטרנזיסטור מחובר במעגל חשמלי כך שבין הרגליים S ו-D ישנו מתח חשמלי כך שאם הוא פתוח, זרם חשמלי יזרום דרכו ללא הפרעה (משול ללחץ בצינור). חיבור ה-G משמש כידית הברז. מתח חיובי על רגל ה-G (בד"כ ביחס ל-S) תגרום לפתיחת הברז ולזרימה חשמלית.

כיצד הפעלת מתח חשמלי על רגל G גורמת לפתיחת מחסום לזרם?

לפני שאענה על השאלה הזאת, אעבור דרך מספר תחנות ביניים. הסבלנות תשתלם.

***

מהו מוליך למחצה?

כמו שכתבתי בעבר, מוליך למחצה אינו מוליך ואינו חצי של שום דבר.

ההבדל העיקרי בין מוליכים למבודדים הוא שבחומרים מוליכים (למשל מתכות) ישנם תמיד כמות עצומה של אלקטרונים זמינים להולכה חשמלית. אין צורך להשקיע אנרגיה כדי לשחרר אותם מהאטומים. לעומת זאת, במבודדים האלקטרונים קשורים לאטומים ואינם זמינים. דמיינו את האלקטרונים לכודים בתוך בור שהוא האטום. ניתן לשחרר אותם אבל צריך להשקיע אנרגיה להרים אותם אל מחוץ לבור. ברוב המבודדים כמות האנרגיה שיש להשקיע היא כל כך גדולה כך שאם למשל נחמם אותו כדי להעניק לאלקטרונים אנרגיה כך שיוכלו לברוח מהבור, החומר עצמו יתפרק.

ישנם מספר חומרים מיוחדים שבהם המחסום שעליו אלקטרונים צריכים להתגבר כדי לצאת לחופשי הוא כל כך קטן כך שהאנרגיה התרמית שיש להם בטמפרטורת החדר מספיקה כדי לשחרר כמות גדולה מהם כך שניתן להעביר זרם חשמלי דרך החומר. חומרים אלה נקראים 'מוליכים-למחצה'. שימו לב שהמוליכים למחצה הם למעשה מבודדים. בטמפרטורות נמוכות הם אינם מוליכים כלל, ובטמפרטורת החדר יש להם מוליכות קטנה ביחס למתכות אך גדולה מאפס. הדוגמה הידועה ביותר למוליך למחצה הוא היסוד סיליקון (צורן), מספר 14 בטבלה המחזורית. הסיליקון הוא החומר העיקרי שמשמש את תעשיית השבבים לייצור מעגלים מודפסים ולכן לייצור טרנזיסטורים.

silicon
תמונה 2: גוש סיליקון. המקור לתמונה: ויקיפדיה, לשם הועלתה על ידי המשתמש Enricoros.

אחת מהתכונות החשובות של המוליכים למחצה בכלל ושל הסיליקון בפרט הוא היכולת לשלוט במוליכות החשמלית שלו ולקבע אותה כרצוננו. המוליכות החשמלית של מתכת, למשל, תמיד גבוהה ותלויה חזק בטמפרטורה. שתי תכונות אלה אינן רצויות אם ברצוננו לבנות רכיב חשמלי שיפעל בטווח רחב של מצבים.

***

כיצד שולטים במוליכות הסיליקון?

גביש הסיליקון מורכב מרשת מחזורית של קשרים קוולנטיים. לפי מיקומו בטבלה המחזורית הוא מייצר 4 קשרים עם 4 אטומים קרובים אליו. קשר קוולנטי הוא בעצם שיתוף של אלקטרונים עם אטום אחר.

ניתן להשתיל אטומים זרים לתוך המבנה הגבישי המסודר של הסיליקון בכמות נמוכה כך שהמבנה עצמו לא ישתנה, כלומר תכונות החומר יישארו זהות. אם נבחר לזהם את הסיליקון למשל בזרחן, מספר 15 בטבלה המחזורית, האטומים הבודדים של הזרחן ישתבצו לתוך הסידור המחזורי של אטומי הסיליקון. אבל לזרחן יש אלקטרון אחד עודף בקליפת האנרגיה החיצונית ולכן לאחר היווצרות הקשר הקוולנטי יישאר אלקטרון אחד עודף שיהיה חופשי להולכה חשמלית. זיהום הסיליקון בסדר גדול של אטום אחד לאלף מספיק כדי להעלות את המוליכות באופן דרסטי מבלי לשנות את תכונות החומר. למעשה האלקטרונים החדשים נהיים הגורם הדומיננטי לכמות האלקטרונים הזמינים להולכה. בנוסף, עבור האלקטרונים שנוספו מספיקה טמפרטורה נמוכה מאוד ביחס לטמפרטורת החדר כדי לנתק אותם מהאטום ולכן כמות האלקטרונים הזמינים להולכה בחומר אינה מושפעת חזק משינויי טמפרטורה. אם כך, קיבלנו חומר שבו אנחנו קבענו את רמת ההולכה על ידי רמת הזיהום והיא אינה תלויה בטמפרטורה. בדיוק מה שנדרש לאלקטרוניקה.

ניתן לזהם סיליקון גם בחומר עם אלקטרון אחד פחות בקליפה החיצונית (למשל בורון, מספר 5 בטבלה, טור אחד שמאלה ביחס לסיליקון) כך שלאחר היווצרות הקשרים יהיה חוסר באלקטרון אחד. מבלי להיכנס יותר מדי לפרטים, החוסר מאפשר זרם מכיוון שהאלקטרונים יכולים לזוז דרך המקום הפנוי (כמו פאזל הזזה). נהוג לקרוא למקום הפנוי 'חור' ולהתייחס אליו כחלקיק בעל מטען חשמלי חיובי (או קווזי-חלקיק). מוליכים למחצה שזוהמו בחומרים 'מימין' ולהם אלקטרונים זמינים להולכה נקראים n-type וחומרים מזוהמים 'משמאל' ולהם חורים נקראים p-type. הזרם החשמלי במוליכים למחצה מורכב, אם כן, משני סוגים: זרם אלקטרונים וזרם חורים.

***

מהו קבל?

אחד הרכיבים הבסיסיים במעגלים חשמליים נקרא קבל. זהו רכיב בעל שני חיבורים למעגל וביכולתו לאגור אנרגיה חשמלית. בצורתו הפשוטה ביותר להסבר מדובר בשני לוחות מתכת שביניהם יש חומר מבודד כלשהו (ראו איור 3). כאשר נפעיל מתח חשמלי בין הלוחות, יצטבר מטען שווה בגודלו והפוך בסימנו על כל לוח כך שנוצר ביניהם שדה חשמלי. כמות המטען על הלוחות תלויה במתח החשמלי על הלוחות ובצורתו של הקבל ותכונותיו של החומר המבודד (האחרון מכונה בעגה 'קיבול').

%d7%a7%d7%91%d7%9c
איור 3: סכמה של קבל לוחות.

ההנחה שלנו בניתוח הקבל הוא ששני הלוחות הם מתכתיים ובעצם, במובן מסוים, מהווים המשך של החוטים במעגל. מתכות יכולות לספק כמות בלתי מוגבלת של אלקטרונים.

מה יקרה אם נחליף את אחד הלוחות המתכתיים לחומר שאינו מתכתי, לדוגמה מוליך למחצה?

***

מהו קבל MOS?

נניח והחלפנו את אחד מלוחות המתכת של קבל לוחות בלוח שעשוי מוליך למחצה. מה יקרה?

הקבל כמכלול יתנהג פחות או יותר אותו הדבר. מטען שווה והפוך יצטבר על הלוחות. אבל המוליך למחצה אינו מתכת והוא מתקשה לספק את האלקטרונים הדרושים. דבר זה מוביל לשינויים מעניינים בתוכו שאותם אנחנו נוכל לנצל.

הקיצור MOS בא במקום metal-oxide-semiconductor. הקבל הוא חומר מבודד (אוקסיד, תחמוצת סיליקון, בעצם זכוכית) בסנדוויץ' בין מתכת למוליך למחצה (ראו איור 4). כמובן שעל הסיליקון יש חיבור מתכתי למעגל החשמלי, אבל זה לא משנה לעקרון הפעולה.

%d7%a7%d7%91%d7%9c-mos
איור 4: סכמה של קבל MOS..

נניח ששכבת הסיליקון היא p-type, כלומר המטענים החופשיים בה הם 'חורים' בעלי מטען חשמלי חיובי. הפעלת מתח חיובי דורשת הצטברות מטען שלילי במוליך למחצה. מה שיקרה הוא שהחורים, שהם בעלי מטען חשמלי חיובי, ידחו ויעזבו את המקום. הם ישאירו אחריהם שכבה של אטומים מיוננים בעלי מטען שלילי שנקראת שכבת המיחסור (depletion), והיא זאת שתורמת את המטען הדרוש.

ככל שנגדיל את המתח, כך ידרשו עוד מטענים שליליים במוליך למחצה ושכבת המיחסור תתרחב. אם המתח המופעל מספיק גבוה (בעגה: מתח הסף) תהליך זה כבר אינו יעיל בגלל רוחבה הגדול של שכבת המיחסור ובמקום זאת יחלו להופיע אלקטרונים (ראו איור 5). כלומר, הפעלת מתח בעוצמה מספיקה יכולה לשנות את אופי המוליך למחצה. החומר כבר לא p-type אלא n-type, כלומר שינוי מחומר שמוליך חורים לחומר שמוליך אלקטרונים. תופעה זאת נקראת אינברסיה (inversion). הפוטנציאל החשמלי משתנה לעומק הרכיב וככל שמתרחקים מהאלקטרודה הוא קטן. לכן האינברסיה תופיע כשכבה דקה קרוב לאלקטרודה (רק באזורים בהם הפוטנציאל גבוה מספיק).

%d7%90%d7%99%d7%a0%d7%91%d7%a8%d7%a1%d7%99%d7%94
איור 5: הפעלת מתח גבוה ממתח הסף על קבל ה-MOS גורמת להיווצרות שכבת אינברסיה..

כעת יש לנו כבר את כל מה שאנחנו צריכים כדי לקבל את הטרנזיסטור.

***

מהו טרנזיסטור MOSFET?

היזכרו שכאשר הצגתי את טרנזיסטור ה-MOSFET כתבתי שיש לו 3 חיבורים: S,D ו-G. כדי לקבלו נוסיף למוליך למחצה בקבל ה-MOS פיסת סיליקון n-type משני צדדיו ונחבר כל אחת מהן למתח חיצוני. אחת הפיסות תסומן ב-S, אחת ב-D והמתכת מעל האוקסיד תכונה G (ראו איור 6).

mosfet
איור 6: סכמה של טרנזיסטור MOSFET.

ללא הפעלת מתח על G לא ניתן להעביר זרם בין S ל-D גם אם נפעיל מתח ביניהן מכיוון שנקודות S ו-D מחוברות לסיליקון מסוג n-type שבו יעבור רק זרם אלקטרונים ופיסת הסיליקון המקורית מהקבל היא p-type ובה יעבור רק זרם חורים. הפעלת מתח מספיק גבוה על נקודה G תגרום להופעת שכבה דקה של n-type קרוב לקצה החיצוני של המוליך למחצה, תחבר בין S ו-D, ותשמש כתעלת הולכה של אלקטרונים (ראו איור 7). דעו כי האפקט הוא דרמטי. כאשר המתח על נקודה G נמוך ממתח הסף אין זרם, ומעל מתח הסף הזרם גדל באופן משמעותי כך שהטרנזיסטור יכול להיחשב כקצר, כלומר כחוט מתכתי מוליך זרם.

%d7%98%d7%a8%d7%a0%d7%96%d7%99%d7%a1%d7%98%d7%95%d7%a8-%d7%a4%d7%aa%d7%95%d7%97
איור 7: הפעלת מתח גבוה ממתח הסף על ב-G גורמת להיווצרות שכבת אינברסיה ולפתיחת הטרנזיסטור לזרם חשמלי.

אם כך, על ידי הפעלת מתחים מתאימים על נקודה G ניתן למתג את הזרם דרך הטרנזיסטור בין מצבים 'פתוח' ו-'סגור'. ברז אלקטרונים מושלם ונוח לתפעול.

הערה לסיום: שימו לב שהמעבר שעשיתי בין קבל MOS לטרנזיסטור MOS הוא קונספטואלי לשם הסבר ברור. לא כך בונים טרנזיסטור MOSFET.

הדרך הטובה לבנות טרנזיסטור MOSFET מהסוג שתואר כאן הוא להתחיל מגוש סיליקון מסוג p ועל פני השטח לזהם שתי בארות קטנות של n. את החיבורים לאזורים השונים יש ליצור כלפי מעלה.

אבל אסיים כאן. ייצור טרנזיסטורים ותפעולם הוא נושא לרשימה אחרת.

רוץ בן סוסי רוץ ודהר בג'ל! – ללמוד פיזיקה במעבדת הביולוגיה (2)

ברשימה קודמת סיפרתי על הצנטריפוגה כדוגמה לפיזיקה פשוטה אך מעניינת שניתן ללמוד במעבדת הביולוגיה. הצנטריפוגה משמשת להפרדת חומרים מומסים במים. הרעיון הכללי הוא שהחיכוך בין מולקולות שונות לבין המים גורם להבדלים בקצב שיקוע שלהן והתנועה המעגלית בצנטריפוגה מייצרת 'כוח כבידה' חלופי חזק שמגביר את קצב השיקוע של החומרים.

הפעם אציג שיטה נוספת להפרדת חומרים, בעיקר מולקולות אורגניות גדולות כמו DNA וחלבונים, שאותה ניתן למצוא בכל מעבדה שעוסקת בביולוגיה מולקולרית בשימוש יום-יומי. אני אנסה גם לשכנע שלמרות שהמכשיר נראה מאוד שונה מצנטריפוגה הרעיון הבסיסי דומה.

***

נניח שיש בידינו מבחנה מלאה בחלקי DNA. כעת או שעלינו לבדוק האם אלה החתיכות הנכונות או שברצוננו להפריד חתיכות מסוג מסוים משאר החתיכות. כיצד נבצע זאת?

השיטה הפשוטה שבה נעשה שימוש בכל מעבדה נקראת אלקטרופורזה. ברשימה זאת אני אתמקד באלקטרופורזה של DNA.

אם נחזור להשוואה לצנטריפוגה, את שדה הכבידה המוגבר יחליף שדה חשמלי ואת החיכוך עם הנוזל יחליף ג'ל שישמש כמסלול מכשולים עבור המולקולות וייצור הבדל בתנועה שלהן. למעשה, בעבר היו מפרידים חתיכות DNA באמצעות צנטריפוגה בשיטה של גרדיאנט ריכוזים, אבל הדיוק שמתקבל באלטרופורזה הוא גבוה יותר והשיטה נוחה יותר.

***

הרעיון הוא לגרום לחתיכות ה-DNA לעבור דרך חתיכת ג'ל ששקועה בתוך נוזל יוני. ככל שחתיכת ה-DNA ארוכה יותר כך קצב התנועה שלה בג'ל נמוך יותר.

הג'ל עשוי מאבקה שמופקת מאצות וכאשר היא מומסת במים החתיכות נקשרות ומייצרות מין רשת שלוכדת בתוכה את המים ומייצרת גוש מוצק ורך. מכיוון שהג'ל ברובו נוזלי חתיכות ה-DNA יוכלו לעבור דרכו אך הרשת הפנימית תפריע לתנועתן. את הג'ל נניח בבריכה קטנה מלאה בנוזל יוני (בעגה המקצועית: running buffer). את חתיכות ה-DNA נטעין על גבי הג'ל בתוך שורת חריצים, מוכנים לזינוק (ראו תמונה 1).

Gel_electrophoresis_apparatus
תמונה 1: מכשיר לביצוע אלקטרופורזה. את הג'ל מניחים במיכל הפלסטיק וממלאים אותו בנוזל יוני. ניתן לראות את חוטי החשמל מחוברים מהמקור למיכל בשני קצותיו. המקור לתמונה: ויקיפדיה, לשם הועלתה על ידי המשתמש Jeffrey M. Vinocur.

חתיכות ה-DNA הם שרשראות באורכים שונים והן גם מכילות מטען חשמלי שלילי. דמיינו את החתיכות כסוסוני-ים שעומדים על קו הזינוק (בתוך החריצים בג'ל) לפני המרוץ. לכל סוסון יש זנב באורך שונה, מקצתם קצרים ומקצתם ארוכים ומשתרכים. ברגע שנפעיל מתח חשמלי בין שני קצוות הג'ל, הסוסונים יתחילו לרוץ לכיוון האלקטרודה שנמצאת במתח חשמלי חיובי שאותה הצבנו בצד הרחוק. ככל שזנב הסוסון ארוך יותר, כך הוא מתקשה במעבר בין רשת המכשולים בתוך הג'ל. כתוצאה, בזמן נתון סוסונים קצרים יעברו מרחק גדול יותר בג'ל מסוסונים ארוכים. יש לדאוג שלא להפעיל את המתח לזמן רב מידי כי אז יצאו הסוסונים מהצד השני של הג'ל ויברחו.

מולקולות ה-DNA הן שקופות ולא נוכל לדעת היכן הם נמצאות לאחר שנעו מהחריצים. לכן, לאחר שהנחנו את חתיכות ה-DNA בחריצים ולפני שהפעלנו את המתח החשמלי נוסיף חומר צביעה. בד"כ נעשה שימוש בחומר שנקרא אתידיום-ברומיד. כאשר מאירים אתידיום-ברומיד באור UV הוא פולט בתהליך פלואורסנטי אור בצבע כתום בוהק (ראו תמונה 2). עוצמת ההארה חזקה אף יותר כאשר הוא קשור למולקולות DNA.

AgarosegelUV
תמונה 2: ג'ל לאחר הרצה תחת אור UV. האתידיום-ברומיד מאיר בכתום. המקור לתמונה: ויקיפדיה, לשם הועלתה על ידי המשתמש TransControl.

בסוף ההרצה נוכל לצלם, תחת אור UV, את המיקום שאליו הגיעו חתיכות ה-DNA שהיו בחריצים.

"אוקיי, הבנתי איך המכשיר עובד אבל כיצד נוכל לדעת מה אורכן של הפיסות והאם הן אלו שרצינו?"

הפתרון כל כך פשוט שהוא גאוני.

בחריץ צדדי אנחנו נשים 'סולם' מוכן שקנינו בחנות. הכוונה היא לתמיסה שמכילה פיסות DNA מדודות וידועות באורכים שונים. בסיום הריצה נקבל לאורך המסלול של הסולם פסי הארה שונים, אחד עבור כל אורך שהכיל הסולם, מארוך לקצר. את האורכים אנחנו הרי יודעים ולכן כל פס מהווה כעת שלב ידוע בסולם. נוכל להשוות את המרחק שעברה הפיסה שאנחנו רוצים לבדוק למקבילה שלה בסולם ולקבוע מה אורכה (ראו תמונה 3).

DNAgel
תמונה 3: השוואה בין 3 סוגי חתיכות שונות של DNA (שלושת הטורים השמאליים). הטור הימני הוא הסולם. החריצים שמהם התחיל המרוץ נמצאים בחלק העליון של התמונה וכיוון התנועה הוא כלפי החלק התחתון. המקור לתמונה: ויקיפדיה, לשם הועלתה על ידי המשתמש Dr d12.

על ידי קביעת אורכם של פיסות ה-DNA נוכל לוודא שבידנו הפיסות שרצינו. כמו כן, אם היו לנו בתמיסה חתיכות באורכים שונים נוכל לחתוך מהג'ל את החתיכה שמכילה את הפס שמתאים לאורך הנכון לפי הסולם, ובכך להפריד אותה משאר החתיכות. מחתיכת הג'ל נוכל להפיק את ה-DNA הלכוד בו.

אם כך, האלקטרופורזה משמשת גם לבדיקת האורך של פיסות DNA וגם להפרדה של פיסות באורכים שונים אחת מהשניה.

עוגה, עוגה, עוגה, בצנטריפוגה נחוגה – ללמוד פיזיקה במעבדת הביולוגיה

בפעמים הראשונות בהן נכנסתי למעבדת מחקר בביולוגיה הרגשתי מאוים במידת מה על ידי המכשירים המוזרים ופרוטוקולים הסבוכים של הניסויים. למי שלא גדל בתחום לוקח זמן לספוג את כל עושר המידע הזה. בחלק מהטכניקות והמכשירים עסקתי ברשימות קודמות (למשל ה-PCR)

בתוך כל הסבך הזה ישנם כמה מכשירים פשוטים או כלים בסיסיים במעבדת הביולוגיה מהם ניתן ללמוד גם פיזיקה מעניינת ולא מסובכת מידי. אחת הדוגמאות היא הצנטריפוגה. במבט ראשון פשוט, מעט מורכב יותר כשנכנסים לעובי הקורה.

Tabletop_centrifuge
תמונה 1: צנטריפוגה מעבדתית. המקור לתמונה: ויקיפדיה, לשם הועלתה על ידי המשתמש Magnus Manske.

***

הצנטריפוגה היא אחד המכשירים השכיחים ביותר במעבדת הביולוגיה. בד"כ מדובר במכשיר מכאני שניתן להטעין בו מבחנות עם נוזלים ואז המכשיר מסובב את המבחנות בתנועה מעגלית במהירות גבוהה, בדומה למתקן עם הכיסאות המסתובבים בפארק השעשועים. המטרה של צנטריפוגה היא להפריד חומרים שונים בתוך נוזל או להפריד חומר מהנוזל על ידי שיקועו.

שני העקרונות שעומדים מאחורי פעולת הצנטריפוגה הם הגברת כוח הכבידה ויצירת הבדלה במהירות השקיעה בין חומרים שונים בנוזל.

חלקיק שוקע בכוס נוזל
איור 2: חלקיק שוקע בנוזל.

דמיינו חלקיק הנמצא בתוך כוס עם נוזל. על החלקיק פועלים כוח כבידה שמושך אותו למטה, כוח ציפה (חוק ארכימדס) וכוח חיכוך עם המים שמפריעים לו ליפול (ראו איור 2).

כוח החיכוך עם המים תלוי בצורת החלקיק, בצמיגות המים ובמהירות התנועה. חישבו מה קורה כאשר אתם מנסים ללכת בבריכה. ככל שאתם מגבירים את מהירותכם, התנגדות המים עולה גם כן.

בדומה לצנחן שחווה כוח חיכוך דומה עם האוויר, גם החלקיק בנוזל יגיע לאחר זמן מה למהירות קבועה (בעגה terminal velocity). ערך המהירות הזאת תלוי בתכונות החיכוך, צורת החלקיק ובצפיפות החומר ביחס לצפיפות הנוזל. חומרים שונים ישקעו במהיריות שונות. תכונה זאת מייצרת עבורנו את היכולת להפריד בין חומרים שונים. הבעיה היא שהזמן שלוקח לחלקיקים קטנים לשקוע הוא ארוך מידי. הפתרון הוא להגביר את כוח הכבידה.

פני המים במבחנה
איור 3: פני הנוזל במבחנה כתלות בכיוון הכבידה.

חוק הכלים השלובים אומר לנו שפני המים יהיו מאונכים לכיוון כוח הכבידה. במבחנה מאונכת לקרקע פני המים אופקיים. אם נטה את המבחנה בזווית, פני המים גם כן יטו כך שעדיין יישארו אופקיים לקרקע ומאונכים לכוח הכבידה (ראו איור 3, חלק ימני).

כאשר אנחנו מסובבים את המבחנה בצנטריפוגה פועלים על המבחנה ועל מה שבתוכה כוחות חזקים מאוד לכיוון ציר הסיבוב (למרכז הסיבוב) כדי לשמר את התנועה המעגלית (בעגה, כוח צנטרפיטלי). חישבו על כדור קשור לחבל שמסתובב במעגל. כדי שיישאר במסלול המעגלי החבל חייב למשוך אותו בחוזקה פנימה ולא לתת לו לברוח. אם החבל יקרע, הכדור יברח ויפסיק להסתובב.

אם תשאלו אדם תלוי על חבל מה כיוון כוח הכבידה, הוא יגיד שברור שלכיוון מטה, כלומר בכיוון מנוגד לכיוון בו מושך אותו החבל. באנלוגיה, חלקיק במבחנה המסתובבת מרגיש, כאמור, כוח מסובב בכיוון מרכז הסיבוב . מכיוון שאינו יודע מה קורה בעולם מחוץ למבחנה יאבחן שכיוון כוח הכבידה (האפקטיבי) הוא הפוך מכיוון הכוח המסובב ולכן החוצה מהמעגל. כוח זה, עבור 3600 סיבובים בדקה, יהיה בערך פי 2000 חזק יותר מכוח הכבידה של כדה"א ולכן יהיה הכוח הדומיננטי הפועל על החלקיק. פני המים יהיו מאונכים לכוח הכבידה האפקטיבי ולכן במהלך הסיבוב יהיו מאונכים לפני הקרקע ולא אופקיים (ראו איור 3, חלק שמאלי).

אם נסובב מספיק מהר לאורך מספיק זמן כל החלקיקים המומסים בנוזל ישקעו בצידה (החיצוני) של המבחנה. זהו השימוש הפשוט ביותר של צנטריפוגה, הפרדת חומר מומס מתוך הנוזל על ידי הגברת כוח הכבידה והגברת קצב השיקוע.

מה קורה כאשר יש יותר מחומר אחד מומס בנוזל במבחנה?

כפי שכבר ציינתי, לכל חומר תהיה מהירות שיקוע שונה ולכן נוכל לכוון את מהירות הסיבוב ואת משך זמן הסיבוב כך שחומר אחד ישקע והשני עוד לא. כך נוכל להפריד את החומרים אחד מהשני. לשם פעולת ההפרדה אנחנו חייבים את הנוזל כדי שייווצר אפקט ההפרדה בין החומרים עקב החיכוך עם המים (תאוצת הנפילה חופשית של גופים אינה תלויה במסתם, את זה ידע גלילאו מזמן).

מי שהשתמש בצנטריפוגה יודע שחייבים להפעיל אותה כאשר היא מאוזנת. אם נרצה לסובב מבחנה בודדת, חובה עלינו להניח מבחנת נוזל נוספת בדיוק בצד השני. כפי שכבר רשמתי, הכוחות שפועלים על החומר במהלך תנועה מעגלית הם עצומים ואם הצנטריפוגה אינה מאוזנת היא תרעד עד כדי כך שסביר שתתעופף מהשולחן וכל המבחנות ישברו.

לא מאמינים בכוחה של התנועה המעגלית לשבר ולנתץ? חובה עליכם לצפות בשני הסרטונים הבאים. שווה ביותר גם למי שמאמין.

 

***

מה השימושים של הצנטריפוגה?

הפרדת חומר מומס מהנוזל.

הפרדת חומרים מומסים שונים אחד מהשני. למשל, ניתן בעזרת צנטריפוגה להפריד אברונים וחלקים שונים בתא. מכיוון שלכל אברון בתא יש תכונות שונות (צפיפות, מסה וכו) ניתן לסובב את הנוזל עם תוכן תאים כך שבכל שלב ישקעו האברונים הכבדים ביותר וניתן יהיה להסיר אותם על ידי איסוף המשקע.

יצירת מפל ריכוזי תמיסה במבחנה. בכל גובה ימצא ריכוז תמיסה שונה. חומר שאותו אנו רוצים לבחון ימצא במבחנה בגובה שמתאים לריכוז שלו. הזכרתי את השיטה ברשימה קודמת שעסקה בניסוי מסלסון-שטאל וגילוי מנגנון השכפול של ה-DNA.

ישנם שימושים נוספים שקצרה היריעה מלהכיל. למשל, כפי שכולנו שומעים בחדשות מידי פעם, בהפרדה של אורניום 235 מאורניום 238 לשימוש בכורים גרעיניים. התהליך שם הוא מעט שונה ועובד בפאזה גזית. ניתן לקרוא על השיטה בדף הויקיפדיה הזה.

לתארך את סבא – על תיארוך רדיומטרי

סבא זקן מאוד. כל כך זקן שאתם חושדים שהוא יכול להיכנס לספר השיאים כאיש הזקן בעולם. אבל יש בעיה. סבא זקן מאוד והתעודות הרשמיות שבהן רשום תאריך לידתו, אם אי פעם היו בכלל קיימות, אינן קיימות כעת.

בעבר שמעתם על תיארוך שארכיאולוגים ואפילו גיאולוגים עושים לממצאים היסטוריים ופרה-היסטוריים ואתם תוהים האם אפשר לתארך את גילו של סבא.

מהו בכלל תיארוך מסוג זה? מה המדע שעומד מאחוריו? האם סבא רדיואקטיבי? על זאת ועוד בהמשך. אך ראשית נתחיל בהתחלה.

***

כל חומר מורכב מאטומים.

כל אטום מורכב מאלקטרונים בעלי מטען חשמלי שלילי ומגרעין שמורכב מנויטרונים ללא מטען חשמלי ופרוטונים בעלי מטען חיובי. מה שקובע את סוג החומר הוא מספר הפרוטונים שבו. אטום שמספר האלקטרונים בו שונה ממספר הפרוטונים הוא בעל מטען חשמלי ומכונה יון. אם מספר הפרוטונים בגרעין ישתנה אז פשוט קיבלנו אטום אחר.

אטומים עם מספר שונה של נויטרונים נקראים איזוטופים. לדוגמה, באטמוספירה נוכל למצוא אטומי פחמן עם 6 פרוטונים ו-6 נויטרונים (מכונה פחמן 12) אך נוכל גם למצוא בכמות קטנה פחמן עם 6 פרוטונים ו-8 נויטרונים (פחמן 14), כלומר איזוטופ אחר של פחמן.

פחמן 14 הוא דוגמה לאיזוטופ לא יציב. הכוונה היא שהכוחות הגרעיניים אמנם מחזיקים את הגרעין אך אנרגטית עדיף לו להפטר מנויטרונים, ואם ימצא הזדמנות טובה יעשה זאת.

ישנן שתי דרכים רלוונטיות לעניינינו עבור גרעין לא יציב להפחית את מספר הנויטרונים שלו. בתהליך הראשון יפלט מהגרעין חלקיק עם שני פרוטונים ושני נויטרונים, שהוא בעצם גרעין הליום. החלקיק הנפלט נקרא באופן מסורתי 'חלקיק אלפא' והתהליך מכונה 'קרינת אלפא'. בתהליך השני אחד הנויטרונים יתחלף לפרוטון נוסף בגרעין ומתוך הגרעין יפלטו אלקטרון וחלקיק נוסף שנקרא נויטרינו. התהליך השני נקרא 'קרינת בטא'. נשים לב שבשני התהליכים מספר הפרוטונים בגרעין משתנה ולכן האטום משתנה לאטום אחר. החלקיקים שנפלטים בשני המקרים טעונים חשמלית, אך עבור אלפא הם כבדים (באופן יחסי) וטעונים חיובית ועבור בטא קלים וטעונים שלילית.

קרינת אלפא ובטא

איור 1: המחשה של קרינת אלפא ובטא. המקור לאיור: ויקיפדיה וויקיפדיה, לשם הועלה על ידי המשתמש Inductiveload.

שני התהליכים שציינתי הם חלק מהתופעה שמכונה 'רדיואקטיביות'. התופעה התגלתה על ידי הנרי בקרל, והזוג פייר ומארי קירי. הגילוי זיכה אותם בפרס נובל בפיזיקה ב-1903. ישנה גם 'קרינת גאמא', שבה נפלטת קרינה אלקטרומגנטית, אך היא אינה חשובה לעניין הנידון כאן.

Pierre_and_Marie_Curie
תמונה 2: מארי ופייר קירי במעבדה בשנת 1904. המקור לתמונה: ויקיפדיה, לשם הועלתה על ידי המשתמש Kuebi.

התפרקות רדיואקטיבית היא תהליך אקראי לחלוטין ברמת הגרעין הבודד. אין ביכולתנו לדעת מתי גרעין מסוים יתפרק. עם זאת, הסטטיסטיקה של אוכלוסיה גדולה של גרעינים היא צפויה לחלוטין. נוכל למשל למדוד מה הזמן שיחלוף עד שחצי מאוכלוסיה של גרעינים רדיואקטיביים תתפרק. אם נשוב ונמדוד את גודל האוכלוסיה לאחר שיחלוף אותו הזמן נגלה שהיא שוב קטנה בדיוק פי שתיים. הזמן הזה מכונה 'זמן מחצית חיים' והוא מאפיין קבוע של כל סוג אטום רדיואקטיבי וקשור בהסתברות שלו להתפרק ביחידת זמן. ערכו יכול לנוע בין מיליארדי שנים (אורניום), אלפי שנים (פחמן 14) לבין דקות ואף שניות עבור איזוטופים אחרים. כלומר אם ידוע לנו זמן מחצית החיים של חומר רדיואקטיבי מסוים נוכל לחזות את כמות החלקיקים בכל רגע בעתיד בדיוק רב (לפי דעיכה אקספוננציאלית).

חומרים רדיואקטיביים מתפרקים והופכים לחומרים אחרים שבמקרים רבים גם הם רדיואקטיביים וכך נמשכת השרשרת בהתפרקויות אלפא ובטא עד שהיא מגיעה לחומר יציב. למרבה ההפתעה קיימות בטבע רק ארבע שרשראות כאלה ששלוש מהן מסתיימות באיזוטופים של עופרת.

***

הרעיון הכללי שעומד מאחורי תיארוך באמצעות רדיואקטיביות (בעגה: תיארוך רדיומטרי) הוא למצוא נקודת זמן בעבר שבה היחס בין הכמויות של שני חומרים בתוך פיסה כלשהי (סלע, עץ וכדומה) ידוע. בהנחה שהפיסה היא מיוחדת בכך שהיא מתהווה למערכת סגורה עבור שני חומרים אלו ואחד מהם רדיואקטיבי נוכל למדוד את היחס ביניהם כיום. על ידי השוואת יחס האטומים היום לערכו הידוע בעבר נוכל לחשב כמה זמן חלף.

היאזרו בסבלנות. זה יהיה יותר ברור דרך שתי דוגמאות.

ישנן שתי שרשראות התפרקות שמתחילות באורניום (238 או 235) ומסתיימות בעופרת (206 או 207 בהתאמה).

זירקון הוא מינרל גבישי נפוץ מאוד בקרום כדור הארץ שנמצא בסלעים מסוגים שונים. במהלך היווצרותו של הזירקון יכולה לחדור אליו כמות קטנה של אורניום ולהיטמע במבנה הגבישי. עופרת, לעומת זאת אינה יכולה להיטמע.

גביש זירקון
תמונה 3: גביש זירקון. המקור לתמונה: ויקיפדיה, לשם הועלתה על ידי המשתמשים Eurico Zimbres ו-Tom Epaminondas.

אם כך, היווצרות גביש זירקון היא נקודת זמן שבה היחס בין כמות האורניום לכמות העופרת בו ידועה (אין עופרת). לאחר סיום היווצרותו של הגביש הוא מהווה מערכת סגורה שבה אטומים של אורניום ועופרת לא נכנסים ולא יוצאים. כל אטום עופרת שנמצא בתוך הגביש הוא תוצאה של התפרקות רדיואקטיבית של אורניום. על ידי מדידת היחס בין כמות העופרת לכמות האורניום בגבישי זירקון ניתן לתארך במדויק את גילם וכך את גיל הסלעים בהם נמצאו.

השיטה הזאת נקראת, באופן לא מפתיע, 'תיארוך אורניום-עופרת' וניתן לקבוע באמצעותה את גיל היווצרותם של סלעים בני מיליון עד כ-4.5 מיליארד שנים בדיוק של אחוז בודד ואף פחות.

נשים לב שבשרשרת ההתפרקויות אורניום-עופרת זמן מחצית החיים של כל הפרטים קטן כל כך ביחס לזה של האורניום כך שבאופן מעשי נמצא אך ורק גרעינים של התחנה הראשונה, אורניום, ושל התחנה האחרונה, עופרת.

***

באטמוספרה מתרחש ללא הרף תהליך בשיווי משקל. למערכת, שהיא האטמוספרה, נכנסים כל הזמן אטומי פחמן 14 חדשים שנוצרו בתהליכים שקשורים לקרינה הקוסמית ויוצאים ממנה אטומי פחמן 14 שהתפרקו רדיואקטיבית. בכל רגע נתון נשמר יחס קבוע בין כמות האיזוטופים פחמן 12 ו-14.

מכיוון שכל היצורים החיים עשויים מחומרים אורגניים שעשויים משרשראות פחמן, ואת הפחמן הם צורכים מהאטמוספרה (או מצריכה של יצורים אחרים) סביר להניח שכל עוד הם חיים היחס בין האיזוטופים בתוכם זהה לזה שמסביבם.

מתי יופר איזון זה? כאשר היצור יפסיק להחליף חומרים עם סביבתו, כלומר לאחר מוות. אם כך, כל עוד עץ חי, היחס בין כמות אטומי פחמן 12 ו-14 בתוכו ידוע. מרגע שהוא מת הוא מהווה מערכת סגורה שבה כמות האיזוטופ פחמן 14 יורדת עקב התפרקויות רדיואקטיביות ולכן היחס בין האיזוטופים של הפחמן משתנה. על ידי מדידת היחס כיום נוכל לתארך את גילה של פיסת העץ, כלומר להעריך את הזמן שעבר מרגע שהעץ הפסיק לחיות ועד עכשיו.

השיטה הזאת נקראת 'תיארוך באמצעות פחמן 14' והיא השיטה העיקרית המשמשת ארכיאולוגים.

נשים לב שזמן מחצית החיים של האיזוטופ הרדיואקטיבי הוא זה שקובע את סקלת הזמן הרלוונטית בתיארוך. מאות מיליוני שנים עבור אורניום-עופרת ואלפי שנים עבור פחמן 14.

***

ומה עם סבא?

סבא זקן מאוד אבל גילו לא קרוב למיליון שנים ולא סביר שנוצרו בגופו גבישי זירקון. לכן תיארוך אורניום-עופרת לא רלוונטי.

סבא עדיין חי ולכן כמות הפחמן 14 בגופו נמצאת בשיווי משקל עם האטמוספרה ולכן גם תיארוך פחמן 14 לא בא בחשבון.

הלך השיא.

הדילמה של יצחק, חלק ב' (מימוש) – כמה מילים על רכיבי זיכרון במערכות סדרתיות

ברשימה הקודמת הצגתי את יצחק, ע. רועה צאן, שגמר אומר לתכנן מעגל חשמלי שבוחן כבשים עוברות בסך ומתריע כאשר ארבע שחורות עוברות ברצף. יצחק הבין שלשם כך יש צורך בשימוש בזיכרון. הצגתי את רכיב הזיכרון הפשוט ביותר שנקרא SR-Latch שיכול לזכור סיבית בודדת ושיש לו שתי ידיות, set ו-reset שבאמצעותן אנחנו יכולים לקבוע את פעולתו. סיימתי את הרשימה באפיון הרכיב על ידי טבלת אפיון וטבלת ערור. הראשונה אומרת מה יזכור הרכיב בסיבוב הבא אם ידוע מה הוא זוכר כעת ומה מצב הידיות. הטבלה השניה מסכמת עבורנו מה צריך ללחוץ אם אנחנו יודעים מה הסיבית השמורה כעת ומה הסיבית שאנחנו רוצים שתהיה שמורה בסיבוב הבא.

המשימה הפעם היא להסביר כיצד ניתן להשתמש ברכיב ה- SR-Latch כדי לתכנן את המעגל הדרוש ליצחק.

דיסקליימר – הרשימה הפעם היא מתכון טכני מאוד לפתרון בעיות מסוג מסוים. ראו הוזהרתם!

זהירות רשימה טכנית זהירות: רשימה טכנית!

***

הדבר הראשון שיש לעשות הוא לשרטט דיאגרמת מצבים שמתארת את מה שהמכונה צריכה לעשות וכיצד היא מגיבה לקלט. למכונה שתפתור את הבעיה שלנו נדרשים ארבעה מצבים שקשורים לכמה 1-דים (כבשים שחורות) כבר נצפו ברצף:

A – הקלט הקודם היה 0

B – הקלט הקודם היה 1

C – השניים הקודמים היו 1

D – השלושה הקודמים היו 1

כל מצב נוסף הוא מיותר ונכלל כבר במצבים A-D.

בדיאגרמת המצבים נשרטט שני חצים היוצאים מכל מצב עבור שני סוגי הקלט האפשריים, 0 או 1. כל חץ יוביל למצב שבו תהיה המערכת לאחר כניסת הקלט החדש. על החץ נסמן קלט משמאל ופלט מימין. להלן הדיאגרמה המתאימה לבעיה שלנו:

דיאגרמת מצבים
איור 1: דיאגרמת מצבים. המספר השמאלי על כל חץ הוא הקלט והימני הוא הפלט.

נשים לב שכל קלט של 0 מחזיר אותנו למצב A ולמעשה מאפס את הספירה. כל כניסה של 1 מקדמת אותנו למצב הבא בטור. כניסה של 1 במצב D משאירה את המצב ב-D וגם משנה את הפלט ל-1. כל עוד הקלט ממשיך להיות 1, המצב נשאר D והפלט נשאר 1 כי המכונה עדיין מזהה רצף של ארבעה 1-דים. כניסה של 0, כאמור, תשלח את המכונה למצב A,  תאפס את הספירה ותשנה את הפלט ל-0.

השלב הבא הוא לתרגם את דיאגרמת המצבים לטבלת מצבים. הטור השמאלי בטבלה מציין את המצב הנוכחי. שני הטורים הימניים מציינים את המצב הבא, אחד עבור כל אפשרות של קלט. בטורים הימניים של המצב הבא יופיע שם המצב ולידו הפלט באותו סיבוב.

טבלת מצבים

כעת נקודד את שמות המצבים לצורה בינארית. מכיוון שאנחנו נדרשים לארבעה מצבים שתי סיביות יספיקו כדי לקודד את כולם. שתי סיביות אלה הן בעצם הזיכרון שלו אנחנו נדרשים. כלומר, מספר המצבים הדרושים לפתרון הבעיה הוא זה שקובע כמה זיכרון אנחנו צריכים להקצות. נסמן סיביות אלה באותיות y1y2.

להלן הטבלה לאחר קידוד:

טבלת מצבים לאחר קידוד

השלב הבא הוא להשתמש בטבלת העירור של SR-Latch כדי לדעת מה יש להזין לכל רכיב זיכרון על מנת לעבור מ- y1y2 של המצב הנוכחי לזה של המצב הבא. לדוגמה המצב הראשון y1y2 (בשורה הראשונה) הוא 00 ולפי טבלת המצבים המקודדת עבור כניסת קלט x=0 המצב הבא הוא 00. טבלת העירור של SR-Latch (ראו רשימה קודמת) מנחה אותנו שכדי לעבור מ-0 ל-0 יש ללחוץ S=0 ואז לא משנה מה לוחצים ב-R. אם כן, גם רכיב זיכרון 1 וגם 2 צריכים לקבל כניסות של S=0 , R=d כפי שניתן לראות בשורה הראשונה של טבלת המימוש. ה-d מסמל don't care.

טבלת מימוש זיכרון

השלב האחרון לפני מימוש הוא למצוא את הפונקציה הבוליאנית המתאימה עבור כל הכניסות והיציאות של המעגל, כלומר עבור: S1, R1, S2, R2 ו-Z הפלט. כל המידע הדרוש כבר קיים בטבלאות שבנינו. נותר רק למצוא את הפתרון המינימלי.

נשתמש בשיטה הנקראת מפת קרנו. נסביר את השיטה תוך פתרון עבור S1. נרכז את הידע שלנו על S1 בטבלה כך שהשורות מוגדרות לפי y1y2 והטורים לפי X הקלט. התוכן של תאי הטבלה הוא הערכים המתאימים של S1. למשל בשורה y1y2=01 עבור x=0 דרוש S1=0 ועבור x=1 דרוש S1=1. להלן הטבלה המלאה:

מפת קרנו 1

כדי לקבל פתרון מינימלי יש לסמן ברצף את כל ה-1-דים בטבלה, בודדים, זוגות, רביעיות, שמיניות וכו'. ה-1 היחיד בטבלה של S1 ממוקם בתא שמשמעותו הבוליאנית היא בעצם x·y1'·y2  כלומר נקבל 1 אם  x ו-y2 שווים 1 ו-y1 שווה 0 (הגרש מסמן מעבר במהפך). נשים לב שמתחת ל-1 יש d, כלומר לא אכפת לי. יש לנו חופש לבחור אותו כ-1 ואז לסמן גם אותו. כעת הטבלה מראה לנו ש-y1 יכול להיות 0 או 1 ולכן S1 בעצם לא תלוי בו. אם כן נוכל לרשום את הפונקציה הבוליאנית המינימלית הבאה: S1=x·y2.

נתבונן במפת קרנו עבור R1:

מפת קרנו 2

ניתן לסמן את שני ה-1-דים ולקבל פתרון דומה לקודם שמצריך שער 'וגם' אחד. נשים לב שאם נבחר את שני ה-d מעל ה-1-דים כ-1 ונסמן גם אותם נקבל שהפתרון המינימלי הוא פשוט 'x, ללא תלות ב- y1yולכן נבחר פתרון זה, 'R1=x.

לסיכום הפונקציות הבוליאניות עבור הכניסות והיציאות הן:

S1=x·y2

'R1=x

'S2=x·y1

R2=x'+ y1

'z=x· y1·y2

נשרטט את המעגל הנדרש באמצעות סימנים מוסכמים של שערים.

מעגל פתרון

השאר כבר על יצחק.

סוף.