ארכיון

Posts Tagged ‘היסטוריה של המדע’

האפקט הפוטואלקטרי – קווים לדמותו, השנים הראשונות

האפקט הפוטואלקטרי ידוע בטריוויה כ-"הדבר הזה שעליו זכה אלברט איינשטיין בפרס נובל (לא על יחסות!)".

מהו האפקט הפוטואלקטרי, מניין הגיע ולמה זה מעניין?

הסקירה הקצרה הזאת (באופן יחסי…) תתמקד בעבודתם של שלושה פיזיקאים, כולם זוכי פרס נובל, שחקרו, מדדו, הסבירו והוכיחו את האפקט: פיליפ לנארד, אלברט איינשטיין ורוברט מיליקן.

***

נתחיל את הסיפור בפיליפ לנארד (אפשר להתחיל לפני כן, אבל אתמקד בעיקרי הדברים). לנארד היה פיזיקאי גרמני שזכה בפרס נובל על מחקרו בנושא 'קרני קתודה', או כפי שאנחנו מכנים אותן כיום, קרני אלקטרונים (שבאותה תקופה, סוף המאה ה-19 עדיין לא היה ברור מה טיבן). לדוגמה, מחקריו בבליעה של קרניים אלה לתוך חומרים היו גורם מכריע בהבנה שמדובר בשטף של חלקיקים ולא בקרינה אלקטרומגנטית ושהאטום ברובו הוא חלל ריק.

בסדרת ניסויים אחרת הקרין לנארד אור על אלקטרודות מתכתיות. נזכר שאור הוא גל אלקטרומגנטי מחזורי שצבעו קשור לאורך הגל שלו, כלומר למרחק שהוא עובר בזמן שלוקח לו להשלים מחזור שלם של תנודה. אדום בסביבות 650 ננומטר, כחול בסביבות 450 ננומטר, ואורכי גל קצרים יותר נקראים אולטרה-סגולים (UV). הקשר בין אורך הגל והתדירות הוא שהתדירות שווה למהירות האור חלקי אורך הגל.

איור 1: הספקטרום האלקטרומגנטי. המקור לאיור: ויקיפדיה, לשם הועלה על ידי המשתמש Inductiveload.

התובנות החשובות לעניינינו שעלו מניסוייו של לנארד הם: 1) ניתן לגרום לפליטה או 'קריעה' של אלקטרונים מאלקטרודה מתכתית על ידי הארה עליה באור אולטרה-סגול, 2) קיימת תדירות סף (קשור, כאמור, לצבע האור) שמתחתיה אין פליטה כלל ומעליה יש פליטה, 3) שימוש באלקטרודות מחומרים שונים גורם לשינוי במהירות (או האנרגיה הקינטית) של האלקטרונים הנפלטים, לשינוי בתדירות הסף אבל לא משפיע על כמות המטען הנפלט (בהנחה שמקור ההארה זהה).

תוצאות ניסוייו של לנארד סתרו את מודל הגלים. אנסה להסביר מדוע על ידי אנלוגיה. חישבו על גלי ים שמכים בצוק שוב ושוב במשך שנים. בכל כמה רגעים מתנפץ לו גל מים על הצוק ושוחק אותו מעט. גלים חלשים שוחקים את המצוק לאט, גלים חזקים יותר מהר. אבל בסיכומו של דבר, גם גלים חלשים ישחקו את המצוק את נחכה מספיק זמן.

לא כך המצב בניסויו של לנארד. אם הגל מתנודד מעל לתדירות הסף מתרחשת קריעת אלקטרונים מהחומר, ואם מתחת אז אלקטרונים אינם מושפעים כלל. לא משנה כמה זמן נחכה, אין אפקט מצטבר. תוצאה זאת אינה תואמת מודל גלים. ישנן סתירות נוספות אך אסתפק בזאת.

***

לפני שאגיע להסבר הפשוט של איינשטיין לתופעה, נאלץ לעשות תחנת ביניים.

היתה בעיה בפיזיקה באותן שנים שנקראת 'קרינת גוף שחור' ואינני רוצה להתעכב עליה מכיוון שהיא דורשת חיבור בפני עצמו. אספר רק בקיצור נמרץ שהתיאוריה והניסוי בתחום זה לגבי עוצמת הקרינה הנפלטת מגוף שחור בתדרים שונים סתרו אחד את השני באופן ניכר ואף מביך ('הקטסטרופה בעל-סגול'). הפיזיקאי הגרמני, זוכה פרס הנובל, מקס פלנק, הנחשב למחולל תורת הקוונטים, פתר את הבעיה על ידי הנחה מוזרה.

פלנק הניח, רק לשם הפתרון, שהקרינה האלקטרומגנטית שנפלטת מגוף שחור מתקיימת בחבילות בדידות, ושכמות האנרגיה בכל חבילה נתונה על ידי קבוע (שידוע היום כקבוע פלנק) כפול התדירות. הנחה זאת אמנם לא התיישבה עם תורת גלים אבל היא הניבה את ההתפלגות הנכונה של הקרינה מגוף שחור בתדרים השונים.

איינשטיין, באחד מ-4 המאמרים המפורסמים שלו משנת 1905, לקח את הרעיון הזה והלך אתו אף רחוק יותר. הוא הניח שחבילות הקרינה של פלנק יכולות לתפקד כסוג של חלקיקים (שאותם אנחנו מכנים היום פוטונים). חבילת אור אחת, או פוטון אחד, של אור פוגע באלקטרון אחד בחומר, אחד-על-אחד, מתנגש בו ומעניק לו את האנרגיה שהוא נושא. כזכור, לפי פלנק, אנרגיה של חבילת אור תלויה בקשר ישר בתדר. אם אנרגיית הפוטון גדולה מספיק כדי להתגבר על הכוחות המחזיקים את האלקטרון בתוך החומר, אז האלקטרון יפלט החוצה. ההפרש שנשאר בין המחיר האנרגטי לקריעת האלקטרון לבין האנרגיה המקורית של הפוטון היא האנרגיה הקינטית שבה יפלט האלקטרון.

נוכל לסכם זאת בנוסחה הפשוטה הבאה: Eph=hf=B+Ek, כך ש- Eph היא אנרגית הפוטון, h קבוע פלנק, f תדירות, B פונקציית העבודה כלומר האנרגיה הדרושה לקרוע אלקטרון מהחומר ו- Ek האנרגיה הקינטית (פרופורציונית למהירות בריבוע).

נשים לב שהסבר פשוט זה מתאים לכל תוצאותיו של לנארד. תדירות הסף תתקבל כאשר אנרגיית הפוטון שווה בדיוק לפונקציית העבודה, כך שהאנרגיה הקינטית שווה לאפס. אם נחליף אלקטרודת פליטה בעצם נשנה את פונקציית העבודה B. ואכן, לפי המודל, תדירות הסף והאנרגיה הקינטית ישתנו. מספר האלקטרונים הנפלטים לא ישתנה כי הוא תלוי בכמות הפוטונים המגיעים ולכם באופי מקור האור.

***

רוברט מיליקן, פיזיקאי אמריקאי, היה משוכנע שהתיאוריה של איינשטיין שגויה מכיוון שהיו עדויות רבות מידי שהאור הוא גל (למשל ניסוי יאנג – שני הסדקים – לקבלת תמונת התאבכות). מיליקן עבד 10 שנים כדי לבנות ולשפר מערכת מדידה שבאמצעותה יוכל להוכיח את צדקתו.

מערכת המדידה כוללת שפופרת ואקום ובתוכה שתי אלקטרודות המוחזקות תחת הפרש מתח ביניהן. מאירים על אחת האלקטרודות וגורמים לפליטה של אלקטרונים מהמתכת (ראו איור 2). מד-זרם מחובר לשתי האלקטרודות, כך שאם אלקטרונים שנפלטו מאלקטרודה אחת מגיעים לשניה, נראה חיווי על כך. בנוסף, ניתן לשנות את המתח בין שתי האלקטרודות כך שהשדה החשמלי ביניהן יוכל לעזור לאלקטרונים להגיע מהאלקטרודה הפולטת לקולטת וגם להפריע. ניתן לשנות את ערכו של המתח המפריע עד לאיפוס הזרם במד הזרם. למתח זה נקרא 'מתח העצירה'.

איור 2: תיאור סכמטי של הניסוי של מיליקן למדידת האפקט הפוטואלקטרי.

נשים לב שמתח העצירה הוא המתח המפריע המינימלי הנדרש כדי לעצור את כל האלקטרונים שנפלטו, כולל האנרגטיים ביותר. כלומר, בעצם מדובר באנרגיה החשמלית הנדרשת לעצירת אלקטרון ששווה לאנרגיה הקינטית של אלקטרון שאותו נדרש לעצור. במילים אחרות, מתח העצירה שווה, עד כדי קבוע, לאנרגיה הקינטית המקסימלית של האלקטרונים הנפלטים.

נוכל לבצע ניסוי בו נמדוד את מתח העצירה עבור אורכי גל שונים של אור המוקרנים על האלקטרודה. אם נציץ שוב בנוסחה של איינשטיין, נראה שהיא חוזה שגרף של מתח העצירה (כלומר בעצם Ek) כפונקציה של התדירות f צריך להראות כקו ישר ששיפועו הוא קבוע פלנק.

ב-1914 פרסם מיליקן את תוצאותיו שהוכיחו מעל לכל ספק שהתיאוריה של איינשטיין נכונה. ב-1921 זכה איינשטיין בפרס נובל על הסברו לאפקט הפוטואלקטרי. פרס נובל על עבודה תיאורטית ניתן (למיטב ידיעתי) רק על כאלה שכבר הוכחו בניסוי.

[הערת שוליים: דוגמה עדכנית לכך היא פרס הנובל בו זכה פיטר היגס על פיתוח התיאוריה עבור 'בוזון היגס'. את התיאוריה הציע כבר בשנות ה-60. ההכרזה על גילוי החלקיק במאיץ החלקיקים בסרן היתה בשנת 2012, ובשנת 2013 הוענק להיגס הפרס.]

ב-1923 זכה מיליקן בפרס נובל ושימו לב לפנינה הבאה שצילמתי מתוך ההרצאה שנתן בטקס (מקווה שלא הוצאתי יותר מידי מהקשרו):

***

לדעתי, החשיבות העיקרית של האפקט הפוטואלקטרי היא בכך שהוא היה מהמבשרים הראשונים של תורת הקוונטית שתעלה על הבמה ותנפץ הרבה ממה שחשבו הפיזיקאים שכבר היה 'סגור' ומובן. האפקט גם הראה שלא ניתן יהיה עוד להסתפק בדעה שאור הוא פשוט גל אלקטרומגנטי. למעשה גם בימים אלה עדיין לא סיימנו להתווכח האם אור הוא גל, חלקיק, גם וגם או משהו אחר לגמרי.

***

סוף

***

נ.ב

בשולי הדברים רציתי לציין אנקדוטה שאינה חשובה כלל לנושא אך מראה לנו שוב שמדע נעשה על ידי אנשים.

פיליפ לנארד היה אמנם גאון פיזיקלי אבל היה גם אנטישמי קולני, מתנגד למדע 'יהודי' והיה גם חלק ממנגנון השלטון הנאצי בזמן הרייך השלישי. בסוף מלחמת העולם השניה וכיבוש גרמניה על ידי בעלות הברית הודח ומפאת גילו נשלח לסיים את חייו בכפר נידח ובשקט יחסי (מת שנתיים אחרי תום המלחמה).

מודעות פרסומת

כשלון שכולו הצלחה – על הניסיון לשחזר את ניסוי הרץ

בשנים האחרונות אני משתדל לקחת על עצמי בחופשת הקיץ פרויקט מאתגר שחורג מהפעילות היום-יומית. לפעמים התוצאות מעניינות ולפעמים פחות.

***

בשנת 1865, אחרי שנים רבות של מחקר ופיתוח, פרסם ג'יימס קלרק מקסוול את ספרו "תיאוריה דינמית של השדה האלקטרומגנטי". בספר זה סיכם מקסוול את כל הידוע על חשמל ומגנטיות. בנוסף, הוא הציג בספר בצורה סדורה את התיאוריה הכוללת שלו לנושא, שאותה פרסם קודם לכן בשורה של מאמרים.

התיאוריה של מקסוול היתה מהפכנית. היא החליפה את רעיון הפעולה (של כוחות) ממרחק באופן מיידי, התיאוריה השלטת באותה תקופה, בשדות אלקטרומגנטיים מתפתחים בזמן. השדה, מונח אבסטרקטי לחלוטין, הוגדר ללא מודל מכניסטי. התיאוריה היתה כתובה במתמטיקה מסובכת ולא מזמינה, וכך היא נשארה, כרעיון מעניין ותו לא. אחת התחזיות המעניינות של התורה היתה קיומם של גלים אלקטרומגנטיים שנעים במרחב במהירות האור.

בין השנים 1886-1889 ביצע היינריך הרץ סדרה של ניסויים מפורסמים שבהם הוכיח את קיומם של הגלים האלקטרומגנטיים. ניסויים אלה עזרו לקבע את התורה האלקטרומגנטית של מקסוול כתורה הבסיסית של התחום המקובלת על כולם. הרץ בנה מכשיר שמייצר מתח גבוה בין שתי אלקטרודות כך שנוצרת התפרקות חשמלית ביניהן וניצוץ (ברק קטן). האנטנה הנושאת את הניצוץ הפיצה גלים אלקטרומגנטיים בתדר גבוה (סדר גודל של מאות MHz). את הגלים הוא קלט באמצעות אנטנת דיפול, שהיא בעצם מוט מתכת קטוע במרכזו, בדומה לאנטנה המשדרת. קליטת הגל מעלה את המתח החשמלי על האנטנה, ובמתח גבוה מספיק האוויר 'ייפרץ' חשמלית ויוצר ניצוץ בין הקצוות (ראו איור 1).

איור 1: סכימה של מערך הניסוי של הרץ. משמאל, מקור מתח גבוה מסוג רומקורף מחובר לאנטנת דיפול. מימין, אנטנת קליטה מעגלית עם מקטע חסר לקבלת פריצה במתח גבוה. המקור לאיור: ויקיפדיה, לשם הועלה על ידי המשתמש Hertzian.

הרץ עשה עבודה יסודית והראה גם שידור וקליטת של גלי רדיו בפעם הראשונה, גם את קיטוב הגל וגם הציב מראה לגלים, ומתוך מדידת הגל העומד שנוצר, מדד את מהירות האור.

***

בתחילת הקיץ קראתי ספר על התפתחות רעיון השדה האלקטרומגנטי ששם הוזכר, כדרך אגב, הניסוי של הרץ. הניסוי לא נראה מסובך מדי במונחים של היום. גמרתי אומר לשחזר אותו. הצלחתי להלהיב עוד שותף בעל ידע בפיזיקה, זמן פנוי ויכולת טובה משלי לבנות דברים. ההגבלות ששמנו לעצמנו: לנסות ולשחזר את הניסוי ההיסטורי, ככל שניתן, ולנסות לארוז את זה כך שיתאפשר להדגים זאת בנוחות מול קהל. רצינו להיעזר בעבודות קודמות אך לא מצאנו שום תיעוד ברשת של אנשים אחרים ששחזרו ניסוי זה בשנים האחרונות, וזאת למרות השפע ברשת וקלות החיפוש. כאן היינו צריכים לחשוד, אבל היינו נלהבים מידי.

***

להרכבת אנטנת השידור ניסרנו מוט מתכת חלול באורך חצי מטר לשני חלקים שווים. על הקצוות שהופרדו הרכבנו כדורי מתכת והשארנו אותם קרובים מאוד אחד לשני. זאת הצומת עליה תהיה התפרקות חשמלית וניצוץ. חיברנו את שני צידי המוט המופרדים למקור מתח מסוג רומקורף (Ruhmkorff Induction Coil) שהוא סוג של שנאי שמייצר פולסים מחזוריים של מתח גבוה ממקור מתח ישר נמוך. בכל פעם שהמתח בין הכדורים מגיע לערך גבוה מספיק מתרחשת פריצה חשמלית באוויר בין הכדורים, מטענים חשמלים יעברו מצד לצד דרך האוויר, ואנו נראה ניצוץ. בזמן הניצוץ נוצר גל עומד על פני שני חלקי האנטנה. נקודת המקסימום של הזרם נמצאת במרכזה (באזור הפריצה). בגלל הצורה ואורך האנטנה היא אמורה לתפקד כבורר תדרים לגל שנוצר עליה. התדר העיקרי המצופה להיות מופץ במרחב משוער להיות מסדר גודל של 300 מגה-הרץ.

איור 2 +3: מקור מתח גבוה מסוג רומקורף (Ruhmkorff Induction Coil). למעלה – איור של המכשיר. ניתן לראות סליל בתוך סליל לקבלת שנאי. בצד ימין חוטים לחיבור מתח ישר נמוך ומעליהם הויברטור. מעל לסלילים ניתן לראות את המוטות שברווח ביניהם תיווצר ההתפרקות החשמלית. למטה – סכימה של המכשיר. המקור לאיורים: ויקיפדיה וויקיפדיה. האיור העליון לקוח מספר שפורסם ב-1920 על רכיבי רדיו. האיור התחתון הועלה לויקיפדיה על ידי המשתמש PieterJanR ועובד על ידי המשתמש Chetvorno.

לקליטת 'השידור' הצבנו אנטנת קליטה שהמבנה שלה זהה לאנטנת השידור. בין שני הקצוות המנוסרים חיברנו נורת ניאון קטנה שנדלקת כאשר בין הקצוות שלה מתפתח מתח גבוה מ-70 וולט. בניסוי המקורי הרץ השאיר קצוות מנותקים ומחודדים, עליהם הרכיב מיקרוסקופ והשחית את עיניו בחושך מוחלט במשך חודשים ארוכים כדי לבצע את המדידות. במקרה הזה השיקול של נראות מול קהל, והצורך לשמר שפיות, גבר על הרצון לדיוק היסטורי.

***

כפי שכותרת הרשימה כבר חשפה, זה לא עבד.

הצלחנו להדליק את הנורה, אבל רק במרחקים מאוד קצרים. במרחקים אלה היה עלינו הנטל להוכיח שאנחנו מודדים תוצאה של הגלים ולא של פרופיל השדה החשמלי החזק קרוב לאנטנה. כלומר, להראות שאם נרחיק את קצוות האלקטרודות, כך שנשאר עם שדה חזק אבל ללא פריצה (ללא גל), לא נראה הארה. הגבול בין הארה לחוסר הארה היה מאוד קרוב ולא אמין.

אחת ההצלחות היפות הייתה להראות את קיטוב הגל. כאשר האנטנות היו מקבילות אחת לשניה, קיבלו הארה בנורה. כאשר הצבנו את האנטנות בניצב אחת לשניה, ההארה נעלמה.

ישנם שני כיוונים בסיסיים כדי לשפר את המדידה: לשפר את השידור או לשפר את הקליטה. בתחום השידור ניסינו לשפר את תפקוד אנטנת השידור בכמה דרכים גיאומטריות. ניסינו לסנן תדרים לא רצויים על ידי סלילים (חוסמים תדרים נמוכים). בתחום הקליטה ניסינו להשתמש במגבר מתח ישר להגביר את רגישות הנורה (לעבוד יותר קרוב למתח ההפעלה שלה) ושקלנו להחליף אותה במד מטען (קבל ומד מתח עם התנגדות כניסה גבוהה מאוד) כדי למדוד באינטגרציה על פני זמן.

לאחר חודש עבודה (לא רצופה, קצת פה קצת שם, בכל זאת יש גם עבודה שוטפת) הקיץ שלנו נגמר והתוצאות נשארו לא משכנעות. נכנענו לעת עתה.

***

האם בזבזנו את זמננו?

ברור שלא.

קודם כל למדנו צניעות. אני הייתי משוכנע שעם הציוד המודרני שלנו נוכל לשחזר את הניסוי הבסיסי בשבועיים והיו לי תוכניות המשך. בפועל זה לא קרה. מניסיוני, כך עובד גם מחקר מדעי אמיתי. אם ניסויים היו קלים לביצוע, משהו אחר כבר היה מבצע אותם. בין הפרסומים על הצלחות יש בעיקר המון כישלונות. החוקרים המובילים הם אלו שמספיק מוכשרים כדי להצליח, ומספיק איתנים נפשית כדי להתמודד עם הכישלונות, יום אחרי יום.

למדנו קצת תיאורית אנטנות שבה שנינו לא היינו בקיאים כלל. למדנו איך בונים מד מטען ברמת הרכיבים על הלוח. מצאנו עניין רב בעבודת המחקר ובנושא עצמו, קראנו ספרים ומאמרים והתייעצנו עם מומחים.

במדד פיתוח מוצר 'מוכן לשיווק' נכשלנו כליל, אך במדד העניין והלמידה, הצלחנו מעל ומעבר, ועבורנו זה היה מספיק טוב.

הדהימו את חבריכם! – על נפלאות ה-coherer והקשר שלו לגלי רדיו

נתחיל הפעם בסדנת יצירה של אביזר קסום כדי להדהים את חבריכם. זה דורש מעט התעסקות בידיים, אבל לא משהו מסובך במיוחד.

הציוד הנדרש לבניית האביזר: שני ברגים מתכתיים גדולים עם קצה שטוח, צינור פלסטיק קשיח עם פתח מעט צר יותר מרוחב הברגים, שופין, מלחציים, שקל אחד.

הציוד הנדרש לביצוע הקסם: נורת לד קטנה ופשוטה, נגד+סוללות המתאימים לנורה, חוטי מתכת מוליכים ומצית גדול כמו אלו שקונים לכיריים במטבח.

בניית ההתקן: ראשית יש להבריז את הצינור כך שנוכל להבריג פנימה את הברגים (להבריז = לייצר חריצי הברגה). ההברזה אינה חובה, אך היא מייצרת יציבות מכאנית להתקן. הבריגו את אחד הברגים לתוך הצינור כך שחציו בפנים וחציו בחוץ והוא מגיע עד למרכזו של הצינור (אין צורך לדייק). שייפו את השקל לקבלת אבקה. אין צורך בכמות גדולה. שיפכו מעט אבקה לתוך הצינור והבריגו את הבורג השני כך שהאבקה נמצאת בין שני הקצוות השטוחים של הברגים בתוך הצינור.

להכנת הקסם חברו מעגל חשמלי טורי של סוללות, נורת לד קטנה פשוטה, נגד מתאים והרכיב שבניתם. הבריגו את הברגים בעדינות פנימה לתוך הצינור עד שתקבלו הולכה חשמלית ואור בנורה. הרחיקו בעדינות את הברגים זה מזה מעט כך שהאור כבה. כעת קרבו את המצית אל המעגל והדליקו אש. הפלא ופלא, הנורה תידלק!

במקרה הכינותי מראש מעגל עם coherer.

הרכיב שבנינו הוא גרסה פשוטה ופרימיטיבית של Coherer.

האבקה ששייפנו מהשקל מכילה כמות מספקת של ניקל, שהוא חומר פרומגנטי (בדומה לברזל וקובלט). במצב הראשוני דאגנו שצפיפות חלקיקי האבקה בין הברגים תהיה נמוכה כך שהמוליכות החשמלית נמוכה ולא זורם די זרם להדליק את הנורה. מסיבה שלא ידועה היטב, בנוכחות של גלים אלקטרומגנטיים חזקים מספיק, גרגירי האבקה הפרומגנטית נדבקים אחד לשני כך שנוצר שביל הולכה חשמלית, המוליכות של הרכיב עולה באופן משמעותי, הזרם עולה והנורה נדלקת. כדי לחזור למצב הראשוני יש להקיש בעדינות על הרכיב.

לחיצה על הכפתור של המצית מייצרת באופן רגעי מתח גבוה מאוד בין שתי האלקטרודות המתכתיות בקצותיו (לדעתי אלפי וולטים, לא בדקתי). המתח מייצר שדה חשמלי שגבוה משדה הפריצה של האוויר, כך שהאוויר הופך רגעית ממבודד חשמלית למוליך וזרם יזרום דרך האוויר בין שתי האלקטרודות. אנחנו נראה ניצוץ והוא זה שיצית את הגז לקבלת אש.

הניצוץ החשמלי הוא זה שמייצר גלים אלקטרומגנטיים המתפזרים לכל עבר. גלים אלה חזקים מספיק כדי להפעיל את ה-coherer, להעלות את המוליכות ולהדליק את הנורה.

אם ברצונכם להשתעשע, בקשו מהקהל להדליק את הנורה עם גפרור וכאשר הם לא מצליחים הדגימו עם המצית. ניסיתי, הקהל משתעשע. לכיבוי הנורה יש להקיש בעדינות על הצינור.

ה-coherer יכול לשמש כקסם נחמד, אך יש לו גם חשיבות היסטורית בהתפתחות הרדיו. במובן מסוים, ה-coherer הוא מה שקדם למה שקדם לטרנזיסטור.

***

בסוף המאה ה-19 החל לעבוד גוליילמו מרקוני האיטלקי על פיתוח טלגרף אלחוטי. את רעיונותיו הראשוניים הוא שאב מהניסויים המפורסמים של היינריך הרץ שבהם הוכיח זה את קיומו של גל אלקטרומגנטי כפי שחזתה התיאוריה של ג'יימס קלרק מקסוול, ובכך שכנע את קהילת הפיזיקאים בתקפותה ובחשיבותה. הרץ יצר התפרקויות של מתח גבוה ובכך שידר גלים אלקטרומגנטיים (בתחום תדרים שהיום אנחנו מכנים גלי רדיו) שאותם קלט באנטנה. מנקודה זאת החל מרקוני את עבודתו. בדרך להצלחה הוא ביצע מספר שיפורים משמעותיים בקליטה ובשידור. אחד מהשיפורים היה שימוש ב-coherer, שהיה סוג של גלאי שאותו ראה מרקוני בניסוייו של הפיזיקאי אוליבר לודג' בשידור וקליטה של גלים אלקטרומגנטיים.

הרעיון הבסיסי של שימוש ב-coherer בטלגרף אלחוטי מסתמך על כך שהרכיב מזהה שידור של גל אלקטרומגנטי ובתגובה סוגר מעגל חשמלי, בדומה להדגמה שתיארתי. המעגל מדווח למפעיל הטלגרף שהתקבל אות (קו או נקודה) וגם מייצר נקישה מכאנית על הרכיב שגורמת לפתיחת המעגל. כך, כל אות שידור שמגיע סוגר ופותח את המעגל החשמלי והמידע שהיה בעבר מגיע דרך חוטי הטלגרף, מגיע באופן אלחוטי.

כבר בתקופתו של מרקוני ה-coherer היה ידוע כרכיב לא אמין ולאחר מספר שנים הוחלף ברכיבים מוצלחים יותר. כיום, לאחר מהפכית המוליכים למחצה וההתקדמות הרבה בתחום האנטנות, ל-coherer נותר רק ערך היסטורי. עם זאת, הוא כל כך פשוט לבנייה שעדיין יש לא מעט אנשים שנהנים להרכיב איתו מעגלים כתחביב, כפי שניתן לראות בשני הסרטונים הקצרים הבאים (ובהרבה אחרים).

קווים לדמותו – פאראדיי, מקסוול והשדה האלקטרומגנטי: יומן קריאה

קראתי ספר ואני רוצה לספר עליו.

הספר 'Faraday, Maxwell, and the electromagnetic field' עוסק בהמצאתו וניסוחו של השדה האלקטרומגנטי. הכותבים Nancy Forbes ו-Basil Mahon טווים את סיפורו של השדה דרך ביוגרפיות מקוצרות של שני אנשי המדע שפיתחו אותו, מייקל פאראדיי וג'יימס קלרק-מקסוול, תוך התמקדות באירועים הרלוונטיים, מכיוון ששניהם תרמו רבות גם בתחומים אחרים.

אבל לפני שאגיע לספר, מהו בכלל שדה אלקטרומגנטי? עסקתי בו בעבר אבל אני רוצה לגשת אליו הפעם מכיוון מעט שונה.

תמונה 1: עטיפת הספר.

***

ידוע שלתכונה שנקראת 'מטען חשמלי' יש שני מופעים שאחד אנחנו מכנים 'מטען חיובי' והשני 'מטען שלילי'. כמו כן ידוע ששני מטענים בעלי תכונה דומה דוחים זה את זה ושני מטענים בעלי תכונה שונה מושכים זה את זה. נשרטט קו ישר בין מיקומם של שני המטענים, ונוכל לומר שהכוח הוא תמיד בכיוון הקו הזה (או משיכה, או דחיה). כעת את אחד המטענים נדביק למקום ואת השני נמקם בכל פעם בנקודה אחרת. בכל נקודה חדשה נשרטט קו חדש למציאת כיוון הכוח. מה שנקבל לאחר מספר מיקומים הוא סדרה של קווים שיוצאים או נכנסים (דחיה או משיכה) למטען המודבק. סיימנו עם המטען הנייד, אפשר להעיף אותו.

הקווים שקיבלנו, שנראים כמו שמש עם קרניים, נקראים קווי השדה, והם אלה שנובעים ממטען מקור (המטען המודבק, ראו איור 2). משמעותם היא שאם נשים בנקודה כלשהי מטען נוסף (כמו המטען הנייד ממקודם), הכוח שיפעל עליו יהיה בכיוון משיק לקווים ששרטטנו בנקודה. ישנה נוסחה לחישוב גודלו של הכוח, שתלויה בעוצמת המטענים ובדעיכה לפי המרחק בריבוע, אבל נעזוב את זה לעת עתה.

איור 2: קווי שדה של מטען נקודתי.

זה נשמע אבסטרקטי למדי. האם מושג השדה הוא הכרחי?

***

לפני קבלת התורה האלקטרומגנטית של מקסוול הדעה הרווחת בין מדענים היתה שכוח חשמלי פועל ממרחק ובאופן מיידי. נניח שיש לי מטען נייד שמשמש לי כמכשיר מדידה, ומרגיש בכל רגע את הכוח החשמלי שמפעיל עליו המקור. אם 'נכבה' או נעלים את מטען המקור, הגלאי ידווח מיידית על העלמות הכוח. כלומר, המידע על העלמות המקור יגיע מיידית לגלאי. היום זה נשמע לנו מוזר אבל למדענים אז לא היתה סיבה טובה לפקפק בכך.

נחזור למטען המקור שלנו ואל קווי השדה שהקשורים אליו. ננסה לדמיין מה יקרה לשדה אם נסיט את המטען מעט מעלה ואז נחזירו למקומו המקורי. מצב 1: מטען בנקודה נמוכה, מצב 2: מטען בנקודה גבוהה, מצב 3: מטען שוב בנקודה נמוכה.

לשם פשטות נשרטט אך ורק את קו השדה שיוצא ימינה בכיוון אופקי. במצב 1 הוא נמוך, במצב 2 גבוה ומצב 3 חוזר להיות נמוך. כעת נזכר שהזזת המטען מהנקודה הנמוכה לגבוהה וחזרה לוקחת זמן. בזמן ההזזה קווי השדה עדיין קיימים אך הם משתנים בהתאם למצב באותו הרגע. לכן קו השדה הימני הוא נמוך ואז ברגע ההזזה נהיה גבוה יותר ויותר ואז חוזר להיות נמוך ונשאר כך. בעצם ייצרנו הפרעה בקו שדומה ליצירת הפרעה בחבל מתוח על ידי נענוע שלו בקצה (ראו איור 3). ההפרעה תתקדם לאורך החבל וזה מה שאנחנו מכנים גל מכני. באופן דומה ההפרעה בקווי השדה תתקדם במרחב והיא הגל האלקטרומגנטי (החלק החשמלי שלו).

אני ממליץ למי שמוצא את איור 3 לא ברור לשחק עם הסימולציה בקישור הזה. במקרה זה אנימציה עובדת טוב יותר מאיור סטטי.

איור 3: הזזה של מטען גורמת לשינוי תלוי זמן בשדה ולהתפשטות של גל אלקטרומגנטי במרחב.

מטען המקור הנע הוא בעצם סוג של אנטנת שידור של גלים אלקטרומגנטיים. את הגלים האלה ניתן לקלוט על ידי אנטנת קליטה שגם היא בעצם מטען נייד בתוך מוליך. אם ההפרעה בקווי השדה אכן נעה במרחב, המטען החשמלי באנטנת הקליטה ינוע גם הוא כאשר היא תגיע אליו. באמצעות מגבר נוכל למדוד את הזרם שנוצר.

כאשר היינריך הרץ מדד את הגלים האלה בפעם הראשונה (1886-1889) הוא למעשה אישש את התיאוריה המוזרה והשנויה במחלוקת של מקסוול על שדות אבסטרקטיים במרחב. בנוסף, הרץ אישר בניסויים את הטענה של מקסוול שהגלים ינועו במהירות האור (באמצעות מדידת גל עומד) ולכן סביר היה להניח שגם האור הוא סוג של גל אלקטרומגנטי.

***

שימו לב שהצורה שבה בחרתי להסביר את מהות השדה האלקטרומגנטי היא אנכרוניסטית. לדוגמה: האלקטרון, כלומר מטען כחלקיק, התגלה רק ב-1897. מקסוול כתב את המאמרים האחרונים על תורת השדות שלו כבר ב-1865. ספרי לימוד בפיזיקה אינם נכתבים בסדר כרונולוגי של גילוי. זה מה שהופך אותם למובנים לקורא 'הטירון'.

***

מה מחפשים קוראים בספרי מדע פופולרי? האפשרויות שעלו בראשי היו: א) ללמוד על נושא מדעי אבל לא ברמה אקדמית, ב) ללמוד על ההיסטוריה של נושא מדעי בין אם מכירים אותו ברמה אקדמית או בין אם לא, ג) לקרא סיפור מעניין שמתמקד במדענים או ברעיון מדעי. הדגש באפשרות הראשונה הוא מדעי, הדגש בשניה היסטורי והדגש בשלישית הוא סיפורי. רוב הספרים יכילו אלמנטים של שלושת הדגשים אך לא במידה שווה.

***

נחזור לספר.

הספר הוא כרונולוגיה של רעיון השדה דרך סיפור חייהם של ממציאיו ומנסחיו, פאראדיי ומקסוול. מחד, החוזק שלו הוא בסיפור המעניין על חייהם (השונים) ועל השיקולים שלהם שהולידו את הרעיונות והגילויים. כל זאת נעשה, לדעתי, בכישרון רב. הדמויות קמות לחיים והקריאה קולחת. מאידך, נקודת התורפה של הספר היא בהסברים על המדע, תיאוריה וניסויים, שאינם ברורים לקורא שאינו מכיר אותם ממקורות קודמים, ויתקשה להבינם מקריאה בספר זה.

מעבר לפרטי הביוגרפיות של פאראדיי ומקסוול למדתי מהספר שהתיאוריה האלקטרומגנטית של מקסוול היתה מהפכנית. לא רק שהיא הניחה שלכוח החשמלי יש תלות בזמן, אלא שהיא היתה הראשונה שלא היה מאחוריה מודל מכניסטי. אין עקרונות מכניים שמסבירים את קיום או את פעולת השדות החשמלי והמגנטי (לדוגמה לחצים או חיכוך בתוך החומר). היא היתה אבסטרקציה מוחלטת של הפיזיקה. מסיבה זאת היה קשה לקהילת המדענים לקבל תורה זאת בזמן שפורסמהעל ידי מקסוול. זאת ועוד, המתמטיקה שבה נכתבה היתה בלתי נסבלת אפילו לפיזיקאים.

אולי יעניין אתכם גם לדעת שאת צורתם המוכרת כיום של 'משוואות מקסוול', שניתן לראות על חולצות וכוסות קפה, לא כתב מקסוול עצמו, אלא היתה עיבוד של התורה בידי אוליבר הביסייד, ברנש מוזר ביותר, אך בעל זכויות רבות.

ממתק נוסף שנמצא בספר הוא טבלה מסודרת של כל הגילויים החשובים בחשמל ומגנטיות משנת 1600 ועד שנת 1905 (איינשטיין), מסודרים בצורה כרונולוגית ונוחה לעיון. הרשימה עושה סדר בראש מבחינה כרונולוגית לכל התחום.

***

לסיכום, נהניתי לקרוא את הספר ואני מרגיש שהרווחתי ממנו הרבה ידע חדש. הוא שם היטב את 'החומר מספר הלימוד' בפרספקטיבה היסטורית. כל עוד לוקחים בחשבון מראש מה הספר מסוגל לתת ומה לא, ההנאה ממנו, לדעתי, מובטחת.

קופסאות שימורים של ידע – למדוד את העולם, יומן קריאה

בואו ונניח שעקב קטסטרופה כזאת או אחרת העולם כפי שאנחנו מכירים אותו נחרב. שארית הפליטה חיה ללא מנעמי הקידמה. אין חשמל, אין קניות בסופרמרקט, אין כלום. האם אנחנו יודעים לבצע פעולות בסיסיות כדי לשרוד בעולם כזה? איך מכינים שימורים של  בשר או ירקות? איך מפיקים בדים מפרוות או מצמחים?

כל נתון על מערכת השמש נמצא כיום במרחק לחיצת כפתור ברשת האינטרנט. הכוונה לרדיוס כדה"א, המרחק לירח ולשמש וכדומה. איך אנחנו יודעים דברים אלה? האם באותו עולם דיסטופי תוכלו לשחזר את הידע? גאוני יוון העתיקה מדדו והסיקו את הגדלים האסטרונומיים הללו. האם אתם יודעים איך עשו זאת?

תהה תשובתכם אשר תהה, ודאי תשמחו לדעת שמישהו ליקט מבחר מהידע הזה לספר, בעברית.

***

למדוד את העולם
עטיפת העותק שלי של הספר 'למדוד את העולם'.

אשר קרביץ וכלנית דותן (שניהם בעלי תארים גבוהים בפיזיקה והראשון גם ידוע כסופר) כתבו לפני מספר שנים את הספר 'למדוד את העולם' שבו הם סוקרים איך נמדדו חלק מהתכונות והגדלים החשובים המתארים את עולמנו. המחצית הראשונה של הספר עוסקת בגדלים במערכת השמש ובמהירות האור. המחצית השניה של הספר דנה בפיזיקה מודרנית, בנושאים כמדידת התכונות של האלקטרון, קבוע פלנק, מודל גוף שחור וטמפרטורת השמש וגילו של כדה"א על ידי תיארוך רדיואקטיבי.

למדתי לא מעט דברים מעניינים שלא ידעתי (בעיקר בחלק הראשון, מכיוון בנושאי החלק השני אני בקיא יותר) והרווחתי כמה אנלוגיות וכמה הסברים מפתיעים. למשל, חיבבתי את הפשטות שבהסבר שניתן לחוק ארכימדס בפרק על ניסוי טיפות השמן של מיליקן. אוכל גם בעתיד להיעזר בפרקים הראשונים כשארצה לחזור ולהיזכר כיצד מעריכים גדלים במערכת השמש.

אבל אם אהיה כנה, יש לא מעט דברים בספר הזה שהפריעו לי במהלך הקריאה.

ראשית, לא ברור לי למי מיועד הספר. האם הוא מיועד לתלמידי תיכון? למורים בתיכון? לחובבי מדע פופולרי? לכלל הציבור? לטעמי, הכותבים ועורכי הספר לא החליטו בעצמם ולכן לא התאימו בצורה נכונה את התוכן ואת הכתיבה. מחד, הטקסט מתיילד ברובו ולכן נראה כאילו מכוון לנוער. מאידך, ההסברים בו אינם ברורים מספיק. פעמים רבות, למשל, מניחים הכותבים שההבנה תבוא לבד מתוך איור גיאומטרי. האם נדרש ידע מוקדם? האם מדובר בשיעורי בית לקורא?

בחלק השני הבעיה מחמירה כאשר מגיע דיון בפיזיקה מודרנית שהוא נטול הקשר לחלוטין. לקורא שאינו בקיא בחומר חסר המון רקע ולמרות שנעשה מאמץ להשלים מעט מושגים חיוניים בתוך הפרקים ובנספחים הדבר לטעמי נעשה בגמלוניות. לדוגמה, פרקים 7 ו-8 על האלקטרון ועל קבוע פלנק אינם ניתנים להבנה כלל, לדעתי, בצורתם הנוכחית. בנוסף, לא ברור לי מדוע הפרקים כל כך קצרים ונטולי הקשר. אורכו של הספר, ללא נספחים, הוא פחות מ-200 עמודים. היה מקום לדקק מעט את הדפים השמנמנים בצורה מוגזמת ולעבות את התוכן והרקע. אין בספר את העומק והתובנות שהייתי מצפה מספר מדע פופולרי.

ברוב הפרקים ניכר כי המתמטיקה נורא חשובה לכותבים, אבל לדעתי היא הרבה פחות חשובה לקוראים. האם הפיתוח המתמטי של הנוסחה המפלצתית המלאה של מטען האלקטרון בניסוי מיליקן באמת חשובה להבנת הניסוי? יש כל כך הרבה דברים חשובים ומעניינים לומר על הניסוי הזה ללא כל צורך בנוסחה הסופית, שהרי אין לאף קורא את הציוד לבצע את הניסוי המורכב בכל מקרה.

זה מוביל אותי לנקודה אחרת שהפריעה לי. במהלך קריאת הספר עלתה בי הרגשה שתיאורטיקן מנסה להסביר לי משהו על ניסויים. אינני יודע דבר על הכותבים ואני מתייחס אך ורק לכתיבה. העניין ניכר במיוחד בחציו הראשון של הספר (אך גם בשני במובן מעט שונה) .האם הם ניסו לפחות חלק מהניסויים שהם מציעים ובדקו עד כמה קל או ריאלי לבצע אותם, או שהכל זה רק דיבורים? האם הם כיוונו שקל אל הירח ורשמו את התוצאה? האם הם הניחו נקניקיה במיקרוגל והצליחו למדוד עליה פסי השחמה? אם כן, היה נפלא לקרוא על כך חוויות אישיות.

העניין האחרון קשור בעבותות לכל הקודמים. הרושם הראשוני שלי תוך כדי קריאת הספר היה שהפרקים הם בעצם שורה של פוסטים מבלוג שנדפסו ונכרכו עם סיפור מסגרת סביר אם כי מעט תלוש ולא לגמרי משכנע. מקריאת התודות בסוף הספר ניתן להסיק (אולי) שהוא כנראה עיבוד של שיעורים שהעביר קרביץ לבני נוער (מחוננים?). דבר זה ביאר לי חלק מהמבנה, הצורה והכתיבה של הספר.

***

לסיכום, שאלת המפתח עבורי היא האם יש ערך מוסף לקריאת הספר מעבר לעיון בדפי ויקיפדיה, שהרי הוא עולה כסף.

התשובה שלי היא שכן, יש בו ערך מוסף. יש בו תחקיר לא מבוטל ועבודת ליקוט וריכוז. יש בו ידע, עובדות מעניינות ואיורים מועילים. יש ערך לרצף הקריאה בו והקורא יחכים ממנו.

אני חושב שכבלוג הוא היה מעולה, כספר קריאה הוא לא מבושל דיו וחסר עומק.

פיצוחים – 'Life's greatest seceret', יומן קריאה

אפתח הפעם בשתי שאלות טריוויה מתחום הביולוגיה המולקולרית. בחנו את עצמכם/ן.

לכל שאלה 4 תשובות אפשריות. סמנו (בדמיון) את התשובה הנכונה לכל שאלה.

שאלה 1:

מי גילתה את הריבוזום?

א) Ŧ

ב) מה זה ריבוזום?

ג) לא יודע, צריך לבדוק בויקיפדיה.

ד) עדה יונת ממכון ויצמן, שגם זכתה על עבודתה בפרס נובל בכימיה.

 

שאלה 2:

מיהם צמד החוקרים שפיצחו את הקוד הגנטי?

א) Ħ

ב) גנטי מי?

ג) לא יודע, צריך לבדוק בויקיפדיה.

ד) פרנסיס קריק וג'יימס ווטסון, שגם זכו על עבודתם, יחד עם מוריס ווילקינס, בפרס נובל בפיזיולוגיה או רפואה.

ADN_animation
איור 1: אנימציה של מבנה DNA מסתובב. המקור לאנימציה: ויקיפדיה, לשם הועלתה על ידי המשתמש brian0918™.

 

תשובות נכונות:

שאלה 1-ג', שאלה 2-ג'.

 

הסבר:

עדה יונת פענחה את מבנה הריבוזום שהוא מכונה מורכבת שפועלת בתא וקשורה לתרגום הבסיסים של מולקולת ה-RNA ליצירת חלבון. פרנסיס קריק וג'יימס ווטסון פענחו את מבנה ה-DNA. כלומר עבודתם החשובה ופורצת הדרך של שלושתם לא היתה גילוי המולקולות אלא פענוח המבנים והמכניזם.

***

מהו בכלל הקוד הגנטי?

החיים הם כאלה שאנחנו, היצורים החיים, בנויים מחלבונים ועל ידי חלבונים שמהווים גם את חומר הבניה וגם את כלי העבודה בתוך התא. הכוונה בחלבונים היא למולקולות שבנויות משרשראות של מולקולות קטנות יותר מסוגים שונים שיש להן תכונות משותפות ונקראות חומצות אמינו.

מאיפה מגיעים החלבונים?

סליל ה-DNA הוא מאקרו-מולקולה שמורכבת משרשרת של מולקולות המכונות נוקליאוטידים מהן יש 4 סוגים שנהוג לסמנן על ידי 4 אותיות בסיסיות: A,G,C,T. חלקים מסוימים בסליל משועתקים לפעמים למולקולות מסוג RNA שגם הן מורכבות מרצפים של 4 אותיות שמתאימות לאותיות המקוריות של מקטע ה-DNA מהם שועתקו. מולקולות ה-RNA לפעמים מתורגמות על ידי מכונה מורכבת שנקראת ריבוזום לרצף משורשר של חומצות אמינו (שלוקטו מהתא וחוברו יחדיו). רצף חומצות האמינו מתקפל לצורה כלשהי והוא החלבון. הרצף שחובר אינו מקרי, אלא נקבע על ידי רצף האותיות שב-RNA.

כלומר סוג החלבון נקבע על ידי רצף חומצות האמינו שנקבע על ידי רצף האותיות של ה-RNA שנקבע על ידי רצף האותיות שב-DNA.

Peptide_syn
איור 2: פעולת התרגום על ידי הריבוזום. לכל רצף של שלושה בסיסים (תכלת) מותאמת חומצת אמינו (ורוד) המתחברת לשרשרת שלאחר קיפולה תהווה את החלבון. המקור לאיור: ויקיפדיה, לשם הועלה על ידי המשתמש Boumphreyfr.

התהליך שתיארתי כאן מכונה 'הדוֹגמה המרכזית של הביולוגיה המולקולרית' והוא פרי המצאתו וניסוחו (כולל השם הבעייתי) של אותו פרנסיס קריק שהזכרתי בפתיחה. ניתן לסכמו גם כך: מידע ב-DNA מוביל ליצירת RNA ומידע ב-RNA מוביל ליצירת חלבון, אבל חלבון לעולם לא מוביל ליצירת DNA.

חשוב לציין שהתיאור שלי הוא מקוצר, פשטני, ומשמיט פרטים ומשתתפים רבים בתהליך השעתוק והתרגום. אבל הוא יספיק לעת עתה.

כעת שימו לב לעובדה המוזרה הבאה: מצד אחד, ישנן 4 אותיות על גבי ה-DNA וה-RNA. מצד שני, מסתבר שישנן כ-22 חומצות אמינו שמרכיבות את החלבונים שנוצרים בתא. כיצד 4 אותיות מקודדות ל-22 חומצות אמינו? מהו האלגוריתם שקובע את חומצת האמינו הבאה שיש לשרשר בהינתן רצף האותיות ב-RNA?

ובכן, זהו הקוד הגנטי שפוצח בראשית שנות ה-60.

***

עטיפת הספר
תמונה 3: עטיפת עותק הספר שלי.

מת'יו קוב, פרופסור בתחום הביולוגיה באוניברסיטת מנצ'סטר, שעוסק גם בהיסטוריה של המדע, פרסם בשנה שעברה ספר בשם:

Life's greatest secret – The race to crack the genetic code

לב הספר עוסק בכרוניקה היסטורית של פיצוח הקוד הגנטי אבל הוא מתחיל הרבה לפני ומסיים הרבה אחרי. הספר מתחיל בסקירה של נושא הגנים לפני שידעו על הקשר ל-DNA. את דרך החתחתים שעבר הרעיון המהפכני שה-DNA הוא החומר הגנטי. סוקר באריכות את פענוח מבנה ה-DNA (ווטסון וקריק) וניסוח הדוגמה המרכזית (קריק). עובר על הגילוי החשוב של אופרון הלקטוז והגן כיחידת בקרה ולא רק כנושא מידע. מציג את הכישלון המוחלט של תיאורטיקנים מתחום הפיזיקה והמתמטיקה לפצח את הקוד. וכמובן מספר בפרוטרוט על פיצוחו של הקוד על ידי הברקה ניסויית של שני מדענים אלמונים שאף אחד לא הכיר ולא לקח בחשבון. לסיום מציג הסופר במספר פרקים סקירה תמציתית של הידע שנצבר משנות ה-70 ועד ימינו, כולל גילויים מפתיעים, השלכות על טכנולוגיה והחשיבות לחיינו כיום, מחוץ למעבדת המחקר.

נושא מרכזי נוסף השזור לאורך הספר הוא התפתחות תורת המידע והקיברנטיקה והניסיון לשלב את העקרונות האלה בחקר הביולוגיה המולקולרית. ניסיונות שלא צלחו וניתן להתווכח כיום מה היתה התרומה שלהם (אם בכלל) להתקדמות בתחום. העיסוק הנרחב בנושא לאורך הספר מעט תמוה ביחס למסקנה שאליו מגיע הסופר בסופו.

כפי שכבר ציינתי, הספר הוא כרוניקה היסטורית ובמובן הזה הוא מעולה. העושר בידע הוא רב והקורא יקבל את הסיפור המלא על הגילויים הגדולים והמהפכות שחלו בתקופה בתחום הביולוגיה (בערך 1935-1965), מי עשה מה, מי אמר מה, מי גילה מה ומתי, כולל רצף הדברים וההיגיון שעמד מאחוריהם. הסיפור הוא מרתק וקל להישאב לתוך הספר.

הצד השני של המטבע הוא שמכיוון שהסופר מתמקד בכרוניקה הוא אינו מתמקד במדע עצמו. לא ניתן להבין מהקריאה את המדע ואת הניסויים המתוארים בספר. במובן הזה הספר הוא יותר היסטוריה מאשר מדע פופולרי. אני מניח שחלק מהקוראים יראו זאת כיתרון וחלק כחיסרון, תלוי מה הם מחפשים.

הספר סובל, לטעמי, מאקדמיזצית יתר, וזה למרות שברור שהוא פונה אל הקהל הרחב. כרבע מהעמודים המודפסים (!) מוקדשים לביבליוגרפיה והערות. בנוסף, הסופר בחר לשבץ כמעט בכל עמוד שני ציטוט מקורי של אחת הדמויות המתוארות. עבורי הציטוטים הרבים קטעו את רצף הקריאה ולא הוסיפו להבנה טובה יותר של הרעיונות שהוצגו.

***

לסיכום:

אני ממליץ על הספר, למדתי ממנו המון. הוא לא קל לקריאה כמו למשל ספר של סיימון סינג אבל הוא שווה את ההשקעה. הוא שם את הדברים בפרספקטיבה גם עבור מי שמכיר את עיקרי הסיפור.

הספר גרם לי להרהר בין היתר על כך שכל פריצת דרך שמתוארת בספר אמנם חתומה על שמו של מדען כזה או אחר אבל עמדה על כתפי עבודה קשה של חוקרים רבים לאורך שנים.

כמו כן, מהו המקום של עבודה תיאורטית בביולוגיה? מצד אחד, במקרה הספציפי של פיצוח הקוד, התיאורטיקנים לא צדקו בדבר והקוד פוצח רק מתוך ניסוייים. מצד שני, רוב הרעיונות התיאורטיים שהציע קריק (פיזיקאי בהכשרתו) חזו את העתיד לבוא וחלקם מחזיק מעמד עד היום. עבורי, חומר למחשבה.

אלה תולדות – מהו אור? סקירה היסטורית מקוצרת

דואר, תור ארוך, המתנה ממושכת. החבילה שמתעכבת כבר כמה שבועות. מישהו חותך אל הדלפק בעודו מסנן "אני רק שאלה".

כיצד תנהגו?

שתי דרכי הפעולה המקובלות הן כמובן: 1) מטר קללות ואיומים, 2) יריקה שאינה משתמעת לשתי פנים. נשים לב שמדובר בשתי פעולות שונות בתכלית כדי להעביר את אותו המסר. נדגים זאת על ידי ניסוי מחשבתי. דמיינו שאתם מבצעים שוב את שתי הפעולות, אך הפעם עם שקית על הראש (ניסוי מחשבתי, כן?). הקללה עדיין תעבוד, היריקה לא.

השמש מטיחה בפנינו אור. האם היא יורקת עלינו או שמא מגדפת אותנו?

מהו בכלל אור? איזו סוג תופעה היא זאת?

800px-Cloud_in_the_sunlight
תמונה 1: ענן מואר על ידי אור השמש. המקור לתמונה: ויקיפדיה, לשם הועלתה על ידי המשתמש Ibrahim Iujaz.

***

כאשר אדם מדבר בעוד ראשו עטוף בשקית חומר ודאי אינו יכול להגיע מפיו אל אוזנו של המאזין. הקול הוא דוגמא לתופעה שנקראת 'גל'. גל הוא הפרעה במרחב שמתקדמת בתווך. החומר שמרכיב את התווך אינו מתקדם אלא ההפרעה עצמה. חישבו על 'גל מקסיקני' שעובר בקהל צופי כדורגל. אף צופה אינו משנה את מיקומו אבל משהו שם בהחלט נע מסביב למגרש. בדוגמה הזאת התווך הוא הקהל וההפרעה שנעה היא הצופים שעומדים לזמן קצר. בגל קול התווך הוא האוויר וההפרעה שמתקדמת היא שינוי בצפיפות האוויר. כאשר הפרעה זאת מגיעה לאוזן היא מרעידה את עור התוף וגורמת לסדרה של פעולות שאותן אנחנו מכנים 'שמיעה'.

במילים אחרות, גל הוא דרך להעביר אנרגיה מבלי להעביר חומר.

ומה לגבי אור? האם באלומת אור היוצאת מפנס יש חומר שמתקדם או הפרעה שנעה במרחב?

בסוגיה הזאת התחבטו גדולים ורבים. לאייזיק ניוטון היתה תיאוריה של חלקיקי אור (1704) ולעומתו, לכריסטיאן הויגנס היתה תיאוריה של גלים (1690). שניהם הצליחו להסביר את התופעות המוכרות כגון החזרה ושבירה של אור ושניהם לא שכנעו בלהסביר תכונות אחרות של האור.

ב-1803 ביצע תומאס יאנג את ניסוי שני הסדקים המפורסם שלו והכריע בסוגיה. הוא הראה שהאור מבצע תופעה שנקראת התאבכות. אם נקיש בצורה זהה בשני מצופים המונחים על פני אמבט מים נגלה שלגלים הנוצרים על פני המים באמבט יש מבנה מרחבי מורכב (ראו אנימציה). התופעה קשורה לכך שבכל נקודה במרחב יש חיבור של גלים משני המקורות שכל אחד מהם עבר דרך שונה ולכן נמצא במצב שונה. מכאן שבכל נקודה נקבל עוצמת תנודה שונה של הגל.

Two_sources_interference
אנימציה 2: תמונת התאבכות של אור משני מקורות קוהרנטיים. המקור לאנימציה: ויקיפדיה, לשם הועלתה על ידי המשתמש Oleg Alexandrov.

עבור גלי מים התופעה צפויה, אך מדוע ראה אותה יאנג באור שעובר דרך שני סדקים? המסקנה הבלתי נמנעת היתה שאור הוא גל עם אורך גל קצר מאוד (המרחק בין תנודה לתנודה במרחב עבור האור הוא מאות ננומטרים).

בסביבות 1817, עם עבודתו של אוגוסטן ז'אן פרנל התיאוריה הגלית של האור התקבלה והתיאוריה החלקיקית נזנחה לחלוטין.

***

אם אור הוא גל, מהו התווך שבו הוא מתקדם ומהי ההפרעה משיווי משקל שמתקדמת בתווך? מה בעצם מתנדנד?

ב-1873 פרסם ג'יימס קלארק מקסווול ספר שבו איגד את עבודתו על חשמל ומגנטיות. הוא הצליח לתאר את כל התופעות החשמליות והמגנטיות תחת מטרייה אחת של ארבע משוואות שבעצם היו כבר מוכרות. בעזרת תוספת קטנה של מקסוול עצמו הוא הצליח לגרום למשוואות לתאר גלים של תנודות בשדות החשמלי והמגנטי המתקדמים במרחב. כמו כן, הוא הצליח להראות שמהירות ההתקדמות של גלים אלה, לפי המשוואות, היא מהירות האור שכבר היתה ידועה. תופעה זאת מכונה כיום 'קרינה אלקטרומגנטית' והיא כוללת בתוכה לא רק את האור הנראה אלא את כל הספקטרום האלקטרומגנטי מקרני X ו-UV ועד לאינפרא-אדום, מיקרוגל וגלי רדיו (ראו איור 3). דבר זה היה כמובן חיזוק נוסף לתיאור של אור כגל.

הספקטרום האלקטרומגנטי
איור 3: הספקטרום האלקטרומגנטי. המקור לאיור: ויקיפדיה, לשם הועלה על ידי המשתמש Philip Ronan.

אני לא אעסוק כאן בשאלת התווך. דנתי בה ברשימה קודמת.

***

בשנת 1900 עסק הפיזיקאי מקס פלנק בנושא בעייתי שנקרא 'הקרינה של גוף שחור'. הבעיה היתה חוסר התאמה בין תחזיות התיאוריה של הקרינה האלקטרומגנטית של גופים מסוג זה למה שנמדד בפועל. פלנק ניסח פתרון לבעיה, שאלמנט אחד ממנו הניח בדיעבד קוונטיזציה של השדה האלקטרומגנטי. במילים אחרות, בפתרון של פלנק האור היה מורכב ממנות בדידות ובלתי פריקות, דבר שאינו מתאים לגלים שהם תופעה רציפה. פלנק עצמו סבר שמדובר בטריק מתמטי בלבד.

באותם שנים כולם שיחקו עם שפופרות ואקום שבהן היה ניתן לפלוט אלקטרונים מאלקטרודה מתכתית לחלל השפופרת. פליטת אלקטרונים מהאלקטרודה הצריכה השקעת אנרגיה. הדבר התאפשר באמצעות חימום האלקטרודה וגם באמצעות הקרנת אור עליה. ב-1902 גילה פיליפ לנארד שמהירותם של האלקטרונים הנפלטים לא תלויה בעוצמת האור המוקרן על האלקטרודה המתכתית אלא בצבע שלו (כלומר בתדירות או אורך הגל). את התופעה הזאת לא היה ניתן להסביר באמצעות מודל של גלים.

את הפתרון סיפק אלברט איינשטיין שלקח רחוק את הקוונטיזציה של פלנק. באחד המאמרים המפורסמים שלו מ-1905 איינשטיין טען ש-'מנת אור' מבצעת אינטרקציה עם אלקטרון בחומר. אם יש לה מספיק אנרגיה (כלומר אורך הגל של האור מספיק קצר) אז האלקטרון ייקרע מהמתכת החוצה והעודף האנרגטי שנשאר הוא המהירות שלו.

שימו לב שזהו הסבר שערורייתי! הוא מניח שהאור מגיע במנות בדידות שמבצעות אינטראקציות בתוך החומר 'אחד-על-אחד' כמו חלקיקים. חישבו על כדור באולינג שפוגע בפינים בסוף המסלול. כך לא מתנהג גל. ב-1915 אישש רוברט מיליקן את המודל של איינשטיין בניסוי. ב-1921 זכה אלברט איינשטיין בפרס נובל לפיזיקה על ההסבר של התופעה שמכונה כיום 'האפקט הפוטואלקטרי'. מנות האור מכונות כיום 'פוטונים'. אגב, מיליקן זכה גם הוא בפרס נובל לפיסיקה בשנת 1923 על עבודתו הזאת ועל מדידת מטען האלקטרון (ניסוי טיפות השמן).

משם הדברים רק החמירו. עוד ועוד תופעות שהתגלו שקשורות לאינטראקציות של אור וחומר הוסברו היטב רק באמצעות מודלים של מנות האור שבמובן מסוים התייחסו לאור כאל אוסף של חלקיקים – הפוטונים. דוגמה אחת היא למשל אפקט קומפטון שעוסק בפיזור של פוטון על ידי מפגש עם אלקטרון. חלק נכבד מההסבר לתופעה לקוח מעולם המושגים של כדורים מתנגשים.

נראה כי אור מתואר היטב על ידי תיאוריה גלית כאשר הוא נע במרחב, ומתואר היטב על ידי תיאוריה חלקיקית כאשר הוא מבצע אינטראקציה עם חומר.

***

אז מה השורה התחתונה? האם אור הוא גל או חלקיק?

לדעתי השאלה מוטעה ומטעה. הדיכוטומיה אינה אמיתית.

להבנתי, אור הוא לא גל ולא חלקיק אלה סך התופעות שאנחנו חוזים בעולם ומכנים אותם בשם 'אור'. האור הוא תופעה מורכבת ואינו אנלוגי לחלוטין לגלי מים או לכדורי ביליארד. עם זאת, נוח לנו לתאר אותו בכלים המתמטיים החזקים שפיתחנו עבור תופעות אלה. זה אפילו עובד לא רע בכלל מבחינה חישובית. עלינו לשמוח בכך ולהיות מוכנים לוותר על הצורך להגדיר. ממילא הגדרה שתיגזר מתוך תיאוריות פיזיקליות מתקדמות של השנים האחרונות  לא תתקשר כלל עם חיי היום-יום שלנו.