Archive

ארכיון מחברים

הג'ורה של המעגל – על חיבור הארקה או אדמה

האם תהיתם פעם מדוע בשקע החשמל בקיר יש שלושה חורים?

האם שמתם לב שלפעמים בתקע יש שני פינים ולפעמים שלושה?

אם אכן תהיתם על כך, הגעתם למקום הנכון. אבל ראשית נתחיל בראשית.


תמונה 1: שקע ותקע ישראלי. המקור לתמונה: ויקיפדיה, לשם הועלתה על ידי המשתמש Kiddo.

***

מדוע מים זורמים במורד ההר ולא במעלה ההר? ישנן שתי דרכים לענות על השאלה הזאת, ושתיהן אומרות את אותו הדבר.

דרך א': על כל מולקולת מים פועל כוח כבידה שכיוונו תמיד למרכז כדה"א, כלומר 'למטה'. לכן המים תמיד 'שואפים' לרדת למטה ולא לעלות למעלה.

דרך ב': כאשר מים יורדים מטה הם יכולים לסובב גלגל ולעזור לטחון קמח או לסובב טורבינה. כלומר מים שיורדים יכולים לבצע עבודה. מים במיקום גבוה יכולים לבצע יותר עבודה ממים במיקום נמוך. את היכולת לבצע עבודה אנחנו מכנים בעגה בשם 'אנרגיה', ולכן מים גבוהים הם בעלי אנרגיה (פוטנציאלית כובדית – שמקורה בכוח כבידה) גבוהה יותר ממים נמוכים. גופים שואפים להיות באנרגיה (פוטנציאלית) מינימלית. זאת הסיבה שמים תמיד יזרמו ממקום גבוה למקום נמוך – מאנרגיה גבוהה לנמוכה.

מה נעשה כאשר כל המים הגבוהים ירדו למטה ואנחנו רוצים שהגלגל ימשיך להסתובב? נצטרך להעלות את המים חזרה למעלה, למשל על ידי משאבה, כלומר נצטרך לבצע עבודה כדי להעלות את המים מאנרגיה נמוכה לגבוהה. בטחנת קמח או בתחנת כוח הידרואלקטרית נרצה שמישהו אחר יבצע את העבודה של העלאת המים במקומנו ואנחנו רק נקצור את העבודה בירידתם.

נשים לב שנוצר כאן מעגל זרימה. המים זורמים מאנרגיה גבוהה לנמוכה ואז מועלים שוב לאנרגיה גבוהה על ידי גורם חיצוני (למשל משאבה).


איור 2: סכר, תחנת כוח הידרואלקטרית. מים יורדים בגבוה לנמוך, מאבדים אנרגיה פוטנציאלית כובדית ומבצעים עבודה בסיבוב טורבינה שמייצרת חשמל. המקור לאיור: ויקיפדיה, לשם הועלה על ידי המשתמש Tomia.

***

במעגל חשמלי זורמים מטענים חשמליים והוא עובד, במובנים מסוימים, כמו מעגל המים שתואר בחלק הקודם. מטענים חשמליים (חיוביים, ראו הערה בסוף) זורמים מאנרגיה גבוהה לנמוכה ואז מועלים חזרה לאנרגיה גבוהה על ידי גורם חיצוני (סוללה, ספק מתח).


איור 3: מטען חשמלי (חיובי) זורם מאנרגיה פוטנציאלית חשמלית גבוהה לנמוכה. ספק מתח או סוללה מחזירים אותו לאנרגיה גבוהה.

באופן מופשט יותר ניתן לחשוב שכדי ליצור זרימה חשמלית קבועה אנחנו זקוקים לשתי נקודות במרחב שנמצאות בהפרש אנרגיות קבוע אחת ביחס לשניה. בין הנקודות נחבר צינור המאפשר זרימה. שתי הנקודות העליונות בשקע החשמל בקיר הן בדיוק נקודות כאלה שבהן חברת החשמל מתחייבת לספק הפרש אנרגיות קבוע (מתח חשמלי). אם נחבר ביניהן צינור (למשל טוסטר משולשים) נקבל זרימה קבועה ונוכל להפיק מהזרימה עבודה (חימום הטוסטר). כמות הזרימה (הזרם החשמלי) תלוי באופי הצינור (ההתנגדות החשמלית) ושניהם יקבעו את כמות העבודה שנפיק בכל שניה (הספק שנמדד ביחידות וואט).

אז לשם מה יש חור שלישי?

***

כיצד מתקבלת נקודה שבה האנרגיה החשמלית של מטען גבוהה ביחס לנקודות אחרות?

ראינו בתחילת הרשימה שמושג האנרגיה קשור בכוח ולכן אנרגיה פוטנציאלית חשמלית תלויה בכוח חשמלי.

ישנם שני סוגים של מטענים חשמליים (חיובי ושלילי). שני מטענים זהים דוחים אחד את השני ושני מטענים שונים מושכים אחד את השני. אם נניח שני מטענים חיוביים, אחד נייד ואחד נייח, אחד ליד השני, הם יפעילו כוחות דחייה אחד על השני. אם כך, המטען הנייד יחל לנוע, לסובב גלגל ולטחון קמח. כלומר נוכל להפיק ממנו עבודה. מאנלוגית המים נוכל להבין שהמטען הנייד נע מאנרגיה חיובית לאנרגיה שלילית, ולכן מובן שהוא מתדרדר במורד מדרון אנרגטי חשמלי.

מכאן יוצא שכדי לקבל הר (אנרגיה גבוהה) אנחנו צריכים עודף מטענים חיוביים בנקודה ביחס לנקודה אחרת, וזה, לפחות קונספטואלית, מה שעושים סוללה, ספק מתח או חברת החשמל.

***

בחומר מוליך מטענים חשמליים יכולים לנוע מנקודה לנקודה ללא תשלום של עבודה, כלומר האנרגיה החשמלית עבור מטען בכל נקודה זהה.

האנרגיה של מים גבוהים היא העבודה שיש להשקיע כדי להעלות אותם מלמטה. באופן אנלוגי, האנרגיה של מטען בנקודה היא העבודה שיש להשקיע כדי להביא אותי לנקודה ממקום שלא פועלים עליו כוחות חשמליים כלל.

נדמיין כדור מוליך טעון. ככל שהכדור טעון במטען חיובי רב יותר כך יש כוח חשמלי רב יותר שמתנגד להבאת מטען חיובי נוסף. ככל שהכדור גדול יותר כך קל יותר להביא מטען נוסף כי המטענים אינם צריכים להיצמד אחד לשני. אם כך, ככל שמטענו של הכדור המוליך קטן יותר ורדיוסו גדול יותר כך האנרגיה הפוטנציאלית החשמלית של הכדור נמוכה יותר.

אם נחבר שני כדורים מוליכים אחד לשני, מטענים יזרמו מכדור אחד לשני עד אשר יהיה שוויון אנרגיות (שוויון גבהים) ביניהם. אם גודלו של אחד הכדורים עצום ביחס לכדור השני זה אומר שני דברים: 1) האנרגיה שלו נמוכה יותר, 2) האנרגיה שלו לא משתנה כמעט בכלל עקב שינוי (קטן) של המטען עליו. אם כך, מה שיקרה לאחר החיבור הוא שכל המטענים יזרמו מהכדור הקטן לכדור הגדול.

כעת החליפו את הכדור הקטן במכונת הכביסה שלכם ואת הכדור הגדול בכדור הארץ וקיבלתם את ההגדרה להארקה, שהיא החור השלישי בקיר. מהסיבה הזאת הוא גם מכונה 'אדמה', 'ground' 'GND', 'ארדונג' וכדומה.

תמונה 4: שקע חשמל עם סימונים על החורים השונים. חור אדום – מתח גבוה, חור כחול מתח נמוך, חור ירוק\צהוב – הארקה. המקור לתמונה: ויקיפדיה, לשם הועלתה על ידי המשתמש Kiddo.

אם אחד מחוטי החשמל נחשף עקב תקלה ונוגע בדופן המתכת של המכונה אתם בסכנת התחשמלות אם תגעו בה ברגליים יחפות. חיבור ההארקה שמחובר לגוף מתכתי גדול ואז לכדור הארץ, ישאב אליו את כל המטענים ויציל אתכם מהתחשמלות. במכשירי חשמל שגופם אינו עשוי ממתכת, אין סכנת התחשמלות מהגוף ולכן לא יהיה חיבור להארקה ובתקע יהיו רק שני חוטים.

הארקה ניתן לקבל מהקיר, ששם החוט מחובר דרך צנרת הביוב לאדמה. אם מדובר במעגלי זרם נמוך ניתן להאריק אותם לגוף מתכתי מספיק גדול, כמו למשל לארון המתכת בו מונחים המכשירים.

ישנם מעגלים אלקטרוניים שבהם יש נקודת אדמה וישנם כאלה שפועלים ללא חיבור לאדמה (צפים). ניתן להתייחס לכל שתי נקודות במעגל שמחוברות לאדמה כאילו הן מחוברות אחת לשניה. למיטב הבנתי זאת הסיבה ששם נוסף לחיבור אדמה הוא 'common ground' או בקיצור 'common' או אפילו 'com'.

ולסיום הערה מציקה: נהוג להגדיר זרם במעגלים חשמליים כזרם מטענים חיוביים מטעמי נוחות. במציאות, הזרם הוא תנועה של אלקטרונים, כלומר חלקיקים שליליים. חלקיקים אלה זורמים במעלה הר האנרגיה, לפי ההגדרות הקודמות שהצגתי, וכל התיאור הופך לפחות ברור. נניח לזה לעת עתה.

דיאטת קו המשווה – על משקל ותאוצה

מה אנשים רוצים?

אהבה? הגשמה? רווחה? אושר?

שטויות! מה שאנשים באמת רוצים זה לשקול פחות.

באחת הרשימות הקודמות סיפרתי על 'דיאטת נפילה'. עיקרה הוא שבמהלך נפילה חופשית, משקלו של אדם העומד על מאזניי קפיץ הוא אפס. הצונח אינו לוחץ כלל על המאזניים מכיוון ששניהם נופלים באותה תאוצה. זאת הסיבה, למשל, שהאסטרונאוטים בתחנת החלל מרחפים. המסה של הנופלים, אגב, לא משתנה, אבל למה להתרכז בשלילי.

הפעם אני רוצה לחזור לנושא ולספר על 'דיאטת קו המשווה'. כל שעל מפחית המשקל הפוטנציאלי לעשות הוא לעבור לגור באזור קרוב יותר לקו המשווה. ירידת המשקל היא מיידית ומובטחת! באחריות!

"כמה?", אתם שואלים. קודם בואו ונדון ב-'למה', ואח"כ נגיע לכמה. נראה גם את הקשר בין דיאטת הנפילה לדיאטת קו המשווה. שתיהן אינן בלתי קשורות אחת בשניה.

***

נקניק סלמי מונח על רצפת מעלית. מהם הכוחות שפועלים עליו?

מצד אחד, כוח הכבידה פועל עליו כלפי מטה. מצד שני הוא אינו נע. אם כך, ברור שהמשטח מפעיל עליו כוח שווה בגודלו והפוך בכיוונו לכוח הכבידה כלפי מעלה. סכום הכוחות הוא אפס. זהו בעצם החוק הראשון של ניוטון. (כל עוד סכום הכוחות על גוף הוא אפס, הגוף אינו משנה את מהירותו).

כלומר, הכוח שמפעיל המשטח על הסלמי שווה לכוח הכובד שפועל על הסלמי.

כאשר מניחים גוף על מאזניי קפיץ, מורים המאזניים את הכוח שמפעיל המשטח על הגוף. מכאן שאם הסלמי מונח על משקל קפיץ, היה מורה המשקל את כוח הכובד. על פני כדה"א ערכו של כוח הכובד קבוע ונתון על ידי מסת הסלמי כפול תאוצת הנפילה החופשית.

%d7%a1%d7%9c%d7%9e%d7%99-%d7%a2%d7%9c-%d7%9e%d7%a2%d7%9c%d7%99%d7%aa-%d7%a0%d7%97%d7%94
איור 1: נקניק סלמי מונח על מאזניים שמונחות על רצפת מעלית במנוחה.

מה קורה אם המעלית משנה את מהירותה, למשל מאיצה כלפי מטה?

אותם כוחות פועלים על הסלמי גם במקרה הזה, אבל לא יכול להיות שסכומם שווה לאפס כי מהירותו של הסלמי משתנה (ביחד עם המעלית). כאן נכנס לפעולה החוק השני של ניוטון שאומר שבמידה וסכום הכוחות על גוף אינו שווה לאפס, הוא שווה למסתו של הגוף כפול התאוצה שלו. החוק השני הוא חוק טבע וניתן להוכחה במעבדה.

אם כך, הפחתת הכוח שמפעיל המשטח על הגוף מכוח הכובד צריכה להסתכם בגודל ששווה למסתו של הגוף כפול תאוצת הנפילה החופשית. מהעברת אגפים במשוואה קל להסיק שבמקרה זה הכוח שמפעיל המשטח על הסלמי קטן יותר מאשר במקרה הקודם בדיוק בערך של התאוצה כפול מסת הסלמי, וזה גם מה שיימדד במאזניים. הסלמי ישקול פחות.

%d7%a1%d7%9c%d7%9e%d7%99-%d7%a2%d7%9c-%d7%9e%d7%a2%d7%9c%d7%99%d7%aa-%d7%9e%d7%90%d7%99%d7%a6%d7%94
איור 2: נקניק סלמי מונח על מאזניים שמונחות על רצפת מעלית שמאיצה כלפי מטה.

מה יקרה אם נחתוך את הכבל שמחזיק את המעלית והיא תחל ליפול בנפילה חופשית? גם הפעם יפחת המשקל במסה כפול תאוצה, אבל כעת התאוצה היא תאוצת הנפילה החופשית. מכאן שהמשקל במהלך נפילה הוא אפס. הסלמי לא מפעיל כלל כוח על המאזניים ולכן מצב נפילה הוא מצב של חוסר משקל. זאת היא בדיוק דיאטת הנפילה.

***

מכונית נוסעת במהירות קבועה במעגל תנועה.

שאלה: מה גורם למכונית לנוע במעגל? תשובה: כוח החיכוך.

איך אנחנו יודעים? אם נשפוך שמן על הכביש ונבטל את החיכוך של הצמיגים עם הכביש המכונית תמשיך לנוע ישר ותחליק החוצה מהמעגל. המכונית נעה במהירות שגודלה קבוע אבל כוח החיכוך מושך אותה כל הזמן לכיוון מרכז המעגל וגורם לה לנוע בתנועה מעגלית.

%d7%9e%d7%9b%d7%95%d7%a0%d7%99%d7%aa-%d7%91%d7%9b%d7%99%d7%9b%d7%a8
איור 3: מכונית נעה במעגל תנועה. כוח החיכוך מופנה לכיוון מרכז המעגל, והוא זה ששומר על המכונית במעגל.

החוק השני של ניוטון, כאמור, מלמד אותנו שסכום הכוחות על גוף שווה למסתו כפול תאוצתו. גם כוח וגם תאוצה הם וקטורים, כלומר גדלים עם כיוונים. לכן השוויון של חוק שני כולל בתוכו גם כיוון. אם כיוון כוח החיכוך הוא אל מרכז המעגל זה אומר שהמכונית מאיצה לכיוון מרכז המעגל. הסיבה שאינה נעה לכיוון מרכז המעגל היא שמהירות תנועתה היא בכיוון משיק למעגל והיא בדיוק כזאת שגורמת לה 'לפספס' את המרכז ולהמשיך לנוע לאורכו של המעגל.

תאוצת המכונית לכיוון מרכז המעגל בזמן תנועתה המעגלית נקראת בעגה 'תאוצה צנטרפיטלית'.

***

שתי פיסות סלמי זהות, האחת מונחת על קו המשווה והשניה על קודקודו של הקוטב הצפוני.

הפיסה המשוונית מבצעת תנועה מעגלית שרדיוסה כרדיוסו של כדור הארץ וזמן המחזור שלה הוא 24 שעות. פיסת הקוטב אינה מבצעת תנועה מעגלית כי ציר הסיבוב של כדה"א עובר בקוטב.

אם כך, פיסת הקוטב אינה מאיצה ובכך שקולה לפיסת סלמי המונחת על רצפת מעלית נחה. קריאת המאזניים שווה למסתה של הפיסה כפול תאוצת הכובד.

הפיסה המשוונית, לעומת זאת, מאיצה כלפי מרכז כדה"א, עקב תנועתה המעגלית, ולכן שקולה לפיסת סלמי המונחת על רצפת מעלית שמאיצה כלפי מטה. מכאן שמשקלה קטן ממשקלה של פיסת הקוטב. ההבדל במשקל שווה למסתה של פיסת הסלמי כפול התאוצה הצנטרפיטלית.

%d7%a1%d7%9c%d7%9e%d7%99-%d7%a2%d7%9c-%d7%a7%d7%95%d7%98%d7%91-%d7%95%d7%a7%d7%95-%d7%9e%d7%a9%d7%95%d7%95%d7%94
איור 4: שני נקניקי סלמי, אחד על הקוטב הצפוני ואחד על קו המשווה. משקלו של הסלמי המשווני קטן יותר בגלל שהוא נע בתאוצה שכוונה למרכז המעגל.

אם ניקח בחשבון את רדיוס כדה"א ואת זמן המחזור של סיבובו נגלה שההבדל במשקלן של שתי הפיסות הוא כ-0.3 אחוז.

[הערת שוליים: התאוצה הצנטרפיטלית נתונה על ידי aR=4π2•RE/T2, כאשר RE הוא רדיוס כדה"א ו-T הוא זמן המחזור]

ואם נחזור לענייני דיאטה, אדם ששוקל 70 ק"ג בקוטב הצפוני ישקול בקו המשווה בערך 69.75 ק"ג, וכל זאת ללא יום אחד של אכילת חסה או פעילות גופנית.

זכרו היכן שמעתם את זה לראשונה!

מי הזיז את אבקת החשמל שלי?! על מקורות מתח (אולי חלק א' ואולי לא)

מזמן לא עסקתי בשעון המעורר שלי, אז בואו ונחזור אליו אבל הפעם מהצד האחורי.

כדי שהשעון שלי יפעל הוא צריך 'חשמל'. ישנן שתי דרכים מקובלות לספק לשעונים מעוררים את המתח וזרם החשמלי שלו הם זקוקים כדי לתפקד. האחת היא לחבר אותם לרשת החשמל והשניה היא שימוש בסוללות.

התוצאה הרצויה להפעלת השעון, קרי: אספקת מתח וזרם מתאימים, זהה בשתי השיטות, אבל הדרך להגיע לשם שונה בתכלית.

ברשימה זאת אעסוק בספק מתח המחובר לרשת החשמל. אולי בהמשך אכתוב על סוללות (בלי נדר).

picture1
תמונה 1: שעון דיגיטלי.

***

מה בעצם מגיע אלינו דרך שקע החשמל בקיר?

הפרש בפוטנציאל החשמלי בין שתי נקודות מכונה בעגה 'מתח חשמלי'. אם שתי נקודות שביניהן שורר מתח, מחוברות זו לזו על ידי מוליך, יחל לזרום זרם חשמלי מפוטנציאל גבוה לנמוך, בדומה למים שזורמים מנקודה גבוהה לנמוכה.

חברת החשמל דואגת שבין שני החורים שבשקע החשמל בקיר תמיד יהיה מתח. כמו כן, היא דואגת שאם נסגור מעגל בין שני החורים יזרום זרם.

אם נכפיל את כמות הזרם בכמות המתח נקבל את ההספק החשמלי שנמדד ביחידות 'וואט' וערכו רשום על כל מכשיר חשמלי שאנחנו קונים. ההספק הוא כמות האנרגיה המתבזבזת בכל שניה (כלומר מומרת מאנרגיה פוטנציאלית חשמלית למשל לחום, כמו בטוסטר משולשים). אם נכפיל את ההספק של מכשיר חשמלי בזמן שהוא פעל נקבל את סך האנרגיה שהתבזבזה בזמן זה, וזה חשבון החשמל שאנחנו משלמים (נמדד בקילו-וואט כפול שעה, הספק כפול זמן).

כדי לייצר מתח חשמלי צריך לעבוד קשה, ואת זה עושות הטורבינות בתחנות הכוח של חברת החשמל. המתח המיוצר בתחנות הוא מתח חילופין (ערכו משתנה באופן מחזורי) בעוצמה גבוהה מאוד (כ-400 קילו-וולט). חשמל במתח גבוה ניתן להוביל בזרם נמוך ובכך להקטין באופן משמעותי את בזבוז האנרגיה על קווי המתח הגבוה שמובילים אותו לאורכה ולרוחבה של המדינה.

%d7%a2%d7%9e%d7%95%d7%93%d7%99-%d7%97%d7%a9%d7%9e%d7%9c
תמונה 2: עמודי חשמל ליד נחל הבשור. המקור לתמונה: ויקיפדיה, לשם הועלתה על ידי המשתמש אורן פלס.

בשקע החשמל בדירה אין צורך במתח גבוה כל כך, ובכל מקרה ההובלה הסתיימה ולכן המתח בשקע הוא רק 220 וולט חילופין. לפני הכניסה לדירה ערכו של המתח הורד על ידי חברת החשמל, אך תלאותיו של החשמל עדיין לא הסתיימו. השעון המעורר זקוק לתפעולו למתח חשמלי ישר (שאינו משתנה) שערכו וולטים בודדים, ויישרף אם יחובר ישירות למתח הרשת. כאן נכנס המכשיר שאנחנו נוטים לכנות 'שנאי' או 'טרנספורמטור', אבל הוא בעצם מתאם מזרם חילופין למתח נמוך וקבוע (AC to DC adapter). המתאם אכן מכיל בתוכו רכיב המכונה שנאי אך גם רכיבים נוספים.

***

מהו שנאי (אידיאלי)?

המקור של שדה מגנטי הוא תנועה של מטענים חשמליים.

עובדה 1: כאשר מזרימים זרם חשמלי דרך תיל מוליך, נוצר שדה מגנטי סביב התיל שכיוונו משיק למעגלים קונצנטריים סביב התיל במרכז. אם נלפף את התיל לצורת סליל (מכונה לפעמים סילונית) כיוון השדה המגנטי בתוך הסליל יהיה בקירוב ישר לאורכו. עוצמת השדה תלויה בצפיפות הליפופים.

עובדה2: אם נלפף את הסליל המדובר סביב ליבת ברזל בצורת טבעת ונזרים דרכו זרם, שטף השדה המגנטי ילכד ויובל לאורכה של הטבעת.

עובדה 3: אם עובר דרך סילונית שטף משתנה בזמן של שדה מגנטי הוא גורם להתעוררות של זרם משתנה בזמן דרך תיל המלופף סביבה. עוצמתו של הזרם תלויה בצפיפות הליפופים.

אם כך, נוכל ללפף על שני צידי טבעת ברזל (מכונה הליבה) שני סלילים שונים, עם צפיפות ליפופים שונה (ראו איור 3). על סליל אחד נשים מתח חשמלי משתנה בזמן שיגרום לזרם חשמלי משתנה בזמן שיגרום לשטף שדה מגנטי משתנה בזמן בתוך הסילונית (עובדה 1) וכן לאורך הטבעת (עובדה 2) שיעבור גם דרך הסילונית השניה ויעורר בה זרם חשמלי משתנה בזמן (עובדה 3). עוצמה הזרם בסליל השני תהיה תלויה ביחס כמות הליפופים בין שני הסלילים, ולכן יתקבל מתח חשמלי שונה בין שני צידי הטבעת. כלומר, טבעת הברזל ושני הסלילים המלופפים סביבה משמשים לשינוי עוצמת המתח החשמלי כתלות ביחס מספר הליפופים. גם חברת החשמל משתמשת בשנאים כדי להקטין את המתח לאורך הרשת.

%d7%a9%d7%a0%d7%90%d7%99-%d7%90%d7%99%d7%93%d7%99%d7%90%d7%9c%d7%99
איור 3: סכימה של שנאי אידיאלי. המקור לאיור: ויקיפדיה, לשם הועלה על ידי המשתמש BillC.

***

פתרנו את בעיית עוצמת המתח, אך אנחנו עדיין תקועים עם מתח חילופין במקום מתח ישר ולכן הרכיב הבא הוא מישר זרם.

זרם חילופין שיוצא מהשקע בקיר משנה את כיוונו כ-50 פעם בשניה. תפקידו של המיישר הוא לגרום לזרם לזרום רק בכיוון אחד. את זאת נשיג על ידי שימוש בגשר דיודות.

דיודה היא רכיב אלקטרוני מחומר מוליך למחצה בעל שתי נקודות חיבור. בשונה מנגד, דיודה אינה סימטרית ביחס לשתי נקודות החיבור שלה. בכיוון אחד זרם אינו יכול לזרום כלל. בכיוון השני זרם יכול לזרום חופשי מעל למתח מסוים. כלומר, הפעלת מתח שלילי על הדיודה תשאיר את הדיודה סגורה. לעומת זאת, הפעלה של מתח חיובי מעל ערך מסוים תגרום לזרימה חופשית. נניח שבקירוב דיודה פתוחה היא קצר (חוט מוליך) ודיודה סגורה היא נתק (חוט מנותק).

כעת נתבונן במעגל הגשר.

%d7%92%d7%a9%d7%a8-%d7%93%d7%99%d7%95%d7%93%d7%95%d7%aa
איור 4: גשר דיודות. חלק עליון – חצי מחזור ראשון, חלק תחתון – חצי מחזור שני. מתח חיובי בכניסה יוצא אותו דבר ומתח שלילי בכניסה מתהפך לחיובי ביציאה. המקורות לאיור: ויקיפדיה וויקיפדיה, לשם הועלה על ידי המשתמש Wykis וטופלה קצת על ידי.

הדיודות מחוברות כך שהמתח הגבוה תמיד יפתח דיודה אחת, המתח הנמוך יפתח דיודה שניה והשתיים האחרות ישארו סגורות.

במקרה הראשון (איור 4 למעלה) נקודת החיבור העליונה במתח גבוה וגורמת לדיודה המסומנת באדום להיפתח. נקודת החיבור התחתונה במתח נמוך וגורמת לדיודה המסומנת בכחול להיפתח. שתי הדיודות האחרות סגורות. דיודה פתוחה היא כמו חוט מוליך ולכן המתח ביציאה הוא בקוטביות זהה לכניסה, גבוה למעלה ונמוך למטה.

כאשר הכניסה בקוטביות הפוכה (איור 4 למטה), כלומר מתח נמוך בנקודה העליונה וגבוה בתחתונה הדיודות שהיו פתוחות נסגרות ואלה שהיו סגורות נפתחות. כפי שניתן לראות באיור, הדיודות הפתוחות כעת גורמות לכך שעדיין המתח הגבוה בנקודת היציאה העליונה והנמוך בתחתונה.

השורה התחתונה היא שמתח חיובי יוצא חיובי ומתח שלילי יוצא חיובי אך שומר על צורתו (ראו איור 5).

%d7%9e%d7%aa%d7%97-%d7%9e%d7%99%d7%95%d7%a9%d7%a8
איור 5: מתח חילופין בכניסה ומתח מיושר ביציאה. המקור לאיור: ויקיפדיה, לשם הועלה על ידי המשתמש Jjbeard וטופלה קצת על ידי.

***

כעת יש לנו מתח מיושר (כיוון הזרם קבוע) אך הוא עדיין לא מתח ישר (ערכו משתנה בזמן). כדי לקבל מתח קבוע בזמן משתמשים בקבל, מין דלי שאוגר בתוכו מטענים חשמליים ולכן אנרגיה חשמלית בצורת מתח חשמלי בין שני הדקיו. הקבל נבחר כך שזמן הפריקה שלו ארוך ביחס לזמן המחזור של תנודת המתח. כאשר המתח עליו גבוה הוא נטען, וכאשר הוא נמוך הוא נפרק. בגלל זמן הפריקה הארוך הוא לא מספיק להגיע למתח נמוך ולכן מבצע תנודות רק במתחים גבוהים. שלב זה משאיר אותנו עם מתח כמעט קבוע שעליו אדוות של שינוי.

הרכיב האחרון הוא מווסת מתח (voltage regulator) שתפקידו להחליק את האדוות. מכיוון שהמימוש הספציפי של רכיב זה תלוי בהספקים ובמתחים הדרושים אני לא ארחיב עליו. אחד הפתרונות הוא לשים דיודת זנר במתח הפוך. מעל למתח מסוים הדיודה נפרצת בכיוון אחורי ונפילת המתח עליה קבועה ויציבה. ניתן להשתמש בתופעה זאת כמייצב מתח, כאשר המתח הקבוע ביציאה הוא נפילת המתח על הדיודה הפרוצה בכיוון אחורי.

***

נסכם את כל השלבים באיור הבא:

%d7%93%d7%99%d7%90%d7%92%d7%a8%d7%9e%d7%aa-%d7%91%d7%9c%d7%95%d7%a7%d7%99%d7%9d-%d7%a9%d7%9c-%d7%a1%d7%a4%d7%a7-%d7%9e%d7%aa%d7%97
איור 6: דיאגרמת בלוקים שמתארת את מקור המתח מנקודת החיבור לרשת החשמל ועד לאספקת המתח הישר לעומס. בכל שלב מוצב אות המתח בגרף בצורה סכמטית.

הסיבה ששנאים, מטענים וספקי מתח הם בעלי משקל כבד היא כי הם מכילים ליפופים רבים סביב ליבה מאסיבית ברכיב השנאי. המטענים מהדור החדש שטוענים לכולנו את הטלפון הסלולרי עובדים בשיטה מעט שונה שבה יש שימוש בהמרה לתדרים גבוהים שמאפשרת שימוש במספר ליפופים קטן יותר על ליבות קטנות באופן משמעותי. אבל זה סיפור לרשימה נפרדת.

זהו.

סיפור הפרוורים: על הבדלים קטנים בקצוות שגורמים לשינויים גדולים בתכונות החומר

כשבת הטוחן ננעלה במצוות המלך בתוך חדר שהכיל גלגל טוויה והמון קש נחלץ לעזרתה עוץ-לי-גוץ-לי (ולא מטוב לב) וטווה במקומה מהקש זהב.

גם האלכימאים של ימי קדם שאפו להמיר עופרת לזהב.

מה בעצם מבדיל זהב מעופרת?

זהב ועופרת שניהם יסודות הנבדלים במספר הפרוטונים בגרעין. לזהב יש 79 פרוטונים ולעופרת 82. שלושת הפרוטונים האלה חשובים. הם משנים לחלוטין את התכונות הכימיות של החומר ולכן עופרת וזהב אינם נמצאים באותו הטור בטבלה המחזורית. תיאורטית, אם ניקח עופרת ונגרע מגרעינה שלושה פרוטונים נקבל זהב. אך גם אם תהליך זה אפשרי, הוא יהיה יקר מאוד ולא יעיל כלכלית מאוד מאוד.

בין הדברים המשותפים לעופרת וזהב היא העובדה ששניהם מוצקים בטמפרטורת החדר (27 מעלות צלזיוס או 300 קלווין). זאת ועוד, האטומים שמרכיבים את שני החומרים האלה מסודרים במבנה גבישי מחזורי המכונה face-centered-cubic או בקיצור FCC. גביש הוא מבנה מחזורי שניתן לתאר על ידי תא יחידה זהה שמשוכפל לכל כיוון במרחב. מקובל לצייר תא יחידה של גביש FCC כקוביה עם אטום בכל אחת מהפינות ועוד אטום על כל דופן (ראו איור 1). זאת אינה הדרך היחידה לבטא את תא היחידה של גביש זה, אך זו הדרך הנוחה ביותר.

109px-cubic-face-centered-svg
איור 1: תא יחידה של מבנה גבישי מסוג FCC. נקודה באיור מייצגת אטום. לקבלת הגביש המחזורי יש לשכפל את תא היחידה לכל הכיוונים במרחב. המקור לאיור: ויקיפדיה, לשם הועלה ונערך על ידי המשתמשים Daniel Mayer, DrBob, User:Stannered.

אז עופרת וזהב נבדלים במספר הפרוטונים בגרעין, אך זהים במבנה הגבישי שלהם. נבחן כעת מקרה הפוך.

יהלום הוא אולי החבר הטוב ביותר של בחורה משנות ה-50 אבל הוא גם חומר קשיח המשמש לא רק כתכשיט אלא למטרות חריטה והוא שקוף לאור נראה. גרפיט לעומתו היא חומר רך שאינו מעביר דרכו אור ומשתמשים בו, בין היתר, בחוד העיפרון. המוזר הוא ששני החומרים האלה מורכבים מאטומי פחמן בלבד וההבדל היחיד ביניהם הוא סידור האטומים בגביש. יהלום מורכב מאטומי פחמן המסודרים בצורה מחזורית שמכונה, בצורה לא מפתיעה, 'סידור יהלום'. גרפיט מורכב מאטומי פחמן שמסודרים ביריעות שטוחות מרוצפות על פני קודקודי משושים, כאשר הקשר הכימי בין שכבה לשכבה הוא חלש (ראו איור 2). זאת הסיבה שנוח להשתמש בחומר בחוד העיפרון, מכיוון שכאשר גוררים את החומר על פני דף, מספר שכבות ניתק ונשאר על הדף כסימנים של כתיבה.

627px-diamond_and_graphite
איור 2: גבישי גרפיט (ימין) ויהלום (שמאל) הם אלוטרופים של פחמן. המקור לאיור: ויקיפדיה, לשם הועלה על ידי המשתמש User:Itub.

יהלום וגרפיט הם ביטויים לצורות שונות לסידור אטומי פחמן כגביש. הצורות השונות לסידור מכונות בעגה 'אלוטרופים'. שתי הצורות אינן האפשרויות היחידות עבור פחמן, אבל נחזור לזה בהמשך.

לסידור המחזורי של גביש השפעה מכרעת על התכונות האופטיות (צבעים, שקיפות ועוד) והחשמליות (הולכה חשמלית ועוד) של החומר. יש אינספור דוגמאות לכך, אך הפעם ברצוני להתמקד בשתיים הקשורות להשפעות של קצוות הגביש.

תכונות הגביש בד"כ מוגדרות עבור הנפח (מה שמכונה בעגה bulk) אבל יש לזכור שלגביש יש קצה, ויש מקרים שהקצה הזה חשוב. הרעיון מאחורי גביש מחזורי הוא שיש סידור שחוזר על עצמו בכל כיוון במרחב, אבל אם הגענו לקצה הגביש אז הסידור המחזורי מופר, ומשהו הולך להשתנות באזור הזה. לפעמים המשהו הזה הוא בעל משמעות עבורנו.

שבבים או צ'יפים הם בעצם מעגלים שמיוצרים ישירות על פני פיסות שטוחות של גבישי סיליקון טהורים מאוד וכאלה שהסידור שלהם זהה בכל נקודה, ללא טעויות (בעגה: חד-גביש או single crystal). מכיוון שמעבד של אינטל ברובו הוא רשת של טרנזיסטורים, ואלה מיוצרים מסיליקון, הרעיון לייצר את המעגל ישירות על פני פיסת סיליקון היה אז ועודנו היום רעיון גאוני. פרוסות הסיליקון עליהן מיוצרים השבבים נחתכות מנקניק ארוך של סיליקון חד גבישי שמיוצר בתהליך מיוחד. אך יש לתת את הדעת באיזה זווית יש לחתוך את הפרוסות מתוך הנקניק. זווית החיתוך תשפיע על תכונות פני השטח של הפרוסה והרי המעגל מיוצר רק על פני השטח ולא בנפח.

מדוע זווית החיתוך של הגביש משפיעה על תכונות פני השטח של הסיליקון?

לשם פשטות בואו ונניח גביש דו-ממדי שסידורו המחזורי קובי פשוט, כלומר ניתן לייצוג על ידי רשת של ריבועים שבכל קודקוד מוצב אטום. כעת שימו לב שזוויות שונות של חיתוך מובילות לפני שטח עם צפיפות אטומים שונה (ראו איור 3, המרחק בין האטומים בקצוות, כלומר על קו החיתוך, שונה). אם נניח שצפיפות נושאי המטען בפני השטח תלויה בצפיפות האטומים, אז נקבל שזווית החיתוך תשפיע על ההולכה החשמלית בפני השטח (שאינה זהה לזאת בתוך הנפח).

%d7%a6%d7%a4%d7%99%d7%a4%d7%95%d7%aa-%d7%a9%d7%95%d7%a0%d7%94-%d7%9b%d7%aa%d7%95%d7%a6%d7%90%d7%94-%d7%9e%d7%96%d7%95%d7%95%d7%99%d7%aa-%d7%97%d7%99%d7%aa%d7%95%d7%9a
איור 3: חיתוך המישור לאורך הקווים האדומים או הצהובים גורם ליצירת דפנות הנבדלות בצפיפות האטומים.

לדוגמה נוספת ואף מוזרה יותר נחזור לפחמן.

הזכרתי בראשית הרשימה שני אלוטרופים של פחמן: יהלום וגרפיט. יש לפחמן אלוטרופים נוספים שהתגלו עם השנים וזיכו את מגליהם בפרסים והוקרה. ישנו ה- bucky-ball שנראה כמו כדורגל וזיכה את מגליו בפרס נובל בכימיה 1996, ישנו הגרפן שהוא שכבה אחת, בסידור משושים כמו בגרפיט, שעל גילויו הוענק פרס נובל לפיזיקה בשנת 2010, וישנו גם ה-carbon-nanotube או בקיצור CNT שהוא, באופן קונספטואלי, שכבת גרפן מגולגלת לצינור.

557px-eight_allotropes_of_carbon
איור 4: אלוטרופים של פחמן. המקור לאיור: ויקיפדיה, לשם הועלה על ידי המשתמש Michael Ströck.

במהלך שנות ה-2000 צינוריות הפחמן רכבו על גל של הייפ מדעי. כולם היו משוכנעים שזהו חומר העתיד שיפתור את כל הבעיות ויביא שלום עולמי. חוקרים נשכרו באוניברסיטאות ומענקי מחקר פוזרו בנדיבות. שנים עברו, שלום עולמי לא הגיע והייפ הגרפן החליף את הייפ ה-CNT, אבל זה נושא לרשימה אחרת. לא מעט שימושים מעניינים אכן יצאו מהמחקר ואפשר לקרוא עליהם בדף הוויקיפדיה על CNT.

מה שמעניין אותי כאן הוא שלא כל צינוריות הפחמן נולדו שוות. חלקן מוליכות חשמלית כמו מתכת וחלקן מתנהגות חשמלית כמו מוליך למחצה. מהי הסיבה לשוני בין צינוריות שונות, שהרי כולן שכבות פחמן מסודרות כצינור?

מסתבר שההבדל בין צינוריות שונות נובע מהכיוון בו גולגלו (באופן קונספטואלי בלבד, הצינוריות אינן מיוצרות על ידי גלגול). האלקטרונים בגביש מתנהגים כסוג של גלים וכיוונים שונים של סגירת המשטחים לצינוריות מייצר תנאי שפה אלקטרוניים שונים לגלים אלה. עובדה זאת גורמת לכך שבכיווני סגירה מסוימים מתקבלת צינורית עם התנהגות מתכתית ובכיוונים אחרים התנהגות של מוליך למחצה (ראו הסבר חלקי באיור 5).

%d7%a7%d7%99%d7%a4%d7%95%d7%9c-%d7%92%d7%a8%d7%a4%d7%9f-%d7%9c%d7%a6%d7%99%d7%a0%d7%95%d7%a8
איור 5: דרכים שונות של סגירת מישור גרפן ל-CNT מובילות לתכונות הולכה חשמלית שונות.

סרטון קצר על מהי CNT, מהם סוגי הסגירה השונים ואיך זה נראה במציאות:

לסיכום, לא רק סוג האטומים קובעים את תכונות החומר, אלא הסידור הגבישי. זאת ועוד, לא רק הסידור הגבישי קובע את תכונות החומר אלא לפעמים לצורת הקצה שלו משמעות גדולה. מוזר אבל נכון.

:קטגוריותכללי תגיות: , ,

מסה, (אולי) לא מה שחשבתם

בשוק מוכרים ענבים לפי משקל. ככל שהמוכר מודד מספר קילוגרמים רב יותר הוא מחייב בכמות גדולה יותר של שקלים. מדוע זה הגיוני? האם אנחנו מקבלים כמות גדולה יותר של ענבים? לא בהכרח, אבל בד"כ כן.

הקילוגרם היא היחידה הבסיסית למדידת מסה, שקשורה לכמות החומר רק בעקיפין. מהי בכלל מסה?

%d7%90%d7%a9%d7%9b%d7%95%d7%9c%d7%95%d7%aa-%d7%a2%d7%a0%d7%91%d7%99%d7%9d
תמונה 1: ענבים. המקור לתמונה: ויקיפדיה, לשם הועלתה על ידי המשתמש Dragonflyir.

***

הצורך בהגדרת המושג מסה עולה מתוך דיון על כוחות ולכן ראשית יש להגדיר במפורש מהו כוח בפיזיקה.

נגדיר: כוח הוא פעולה הדדית בין שני גופים שניכרת בשינוי מהירות או שינוי צורה.

דוגמה: אם אני מטיח אגרוף בגוש פלסטלינה מתרחשת בעקבות המגע בין שני הגופים אינטרקציה שתוצאתה היא שגוש הפלסטלינה ישנה את צורתו ואת מהירותו. באותו הזמן, גם היד תשנה את צורתה ומהירותה.

ישנן שתי דרכים להגדיר מהי מסה.

דרך א'

חוק הכבידה של ניוטון אומר שבין כל שני גופים (מסות) שורר כוח משיכה שתלוי במסתם של הגופים ובמרחק ביניהן. ככל שהמסות גדולות יותר, כך הכוח ביניהן גדול יותר. ככול שהמרחק ביניהן גדול יותר, כך הכוח ביניהן קטן יותר.

%d7%97%d7%95%d7%a7-%d7%94%d7%9b%d7%91%d7%99%d7%93%d7%94-%d7%a9%d7%9c-%d7%a0%d7%99%d7%95%d7%98%d7%95%d7%9f

F הוא כוח הכבידה בין שתי מסות, m מסמן את מסות הגופים השונים, r את המרחק ביניהם ו-G קבוע אוניברסלי שקשור לחוזק הכוח.

כלומר, קיום כוח הכבידה והמודל שמסביר את אופן פעולתו מגדיר מהי מסה. את הקבוע האוניברסלי G נקבע מתוך מדידות לאחר שנקבע מהי מידת הקילוגרם.

כל הגופים הגשמיים שנמצאים לידי כרגע מכילים את התכונה הפיזיקלית שנקראת מסה וכולם נמצאים בשדה כבידה זהה של כדור הארץ (מסת כדה"א והמרחק ממרכזו זהים בקירוב עבור כולם). נוכל להיעזר בעובדה זאת כדי לכייל את סקלת מדידת המסות. נקבע שאחד החפצים הוא 1 ק"ג ונשתמש במאזניים ובכוח הכבידה לקבוע את כל השאר. סדרה כזאת של גופים קיימת בצרפת והיסטורית היא מגדירה עבורנו מהו קילוגרם.

national_prototype_kilogram_k20_replica
תמונה 2: העתק של הקילוגרם הרשמי המקורי מצרפת שמוחזק על ידי US government National Institute of Standards and Technology או בקיצור NIST במרילנד לתצוגה. מדובר בגוש מתכת שהוא 90% פלטינום ו-10% אירידיום. המקור לתמונה: NIST דרך ויקיפדיה.

דרך ב'

בהגדרת הכוח ציינתי שהוא ניכר בשינוי מהירות.

החוק השני של ניוטון אומר שאם סכום הכוחות הפועלים על גוף שונה מאפס, הוא משנה את מהירותו, כלומר מאיץ. סכום הכוחות שפועל על הגוף שווה לקבוע כפול התאוצה בה הוא נע. את הקבוע הזה אנחנו מכנים בשם 'מסה' ובעצם בפעולה זאת מגדירים מהי מסה.
[הערת שוליים: אם אתם מפעילים כוח על גוף נח והוא לא משנה את מהירותו, כלומר מתחיל לנוע, זה עקב כוח החיכוך. סכום הכוחות על הגוף, כולל כוח החיכוך, הוא אפס.]

בדיקה במעבדה תאשר את החוק ותראה שערכו של הקבוע (שיפוע הגרף בין סכום הכוחות לתאוצה) תלוי בגוף עצמו ובכמה הוא מאסיבי. גם על קרח, שעליו החיכוך הוא מינימלי, קל להאיץ מטבע של חצי שקל וקשה להאיץ מקרר משפחתי 3 דלתות עם מכונת קרח מובנית.

%d7%97%d7%95%d7%a7-%d7%a9%d7%a0%d7%99-%d7%a9%d7%9c-%d7%a0%d7%99%d7%95%d7%98%d7%95%d7%9f
איור 3: גרף איכותי של החוק השני של ניוטון, כלומר הקשר הישר בין שקול הכוחות לתאוצה.

אם כך, מסה היא התנגדות הגוף להפעלת הכוח. ככל שמסתו של גוף גדולה יותר, כך התאוצה שנגרמת עקב הפעלת כוח עליו קטנה יותר, ולהפך.

***

כעת חשוב שנעצור ונחשוב. האם שתי ההגדרות מדברות על אותו הדבר? מבחינה עקרונית נראה שמדובר בשתי תופעות שונות לחלוטין, ושרק במקרה בחרנו לקרוא לשתיהן בשם המשותף והמטעה 'מסה'.

למעשה המסה מדרך א' מכונה 'מסה כבידתית' וזאת מדרך ב' מכונה 'מסה אינרציאלית'.

ניתן להראות על ידי חיבור פשוט של חוק הכבידה והחוק השני שגם אם נניח שמסה כבידתית ומסה אינרציאלית הן שונות, הן חייבות להיות שוות עד כדי קבוע. אבל 'עד כדי קבוע' זה לא 'שוות'.

אז האם הן שוות?

במשך השנים, למרות מאמצים לא מבוטלים של מדענים מרחבי העולם למדוד הבדלים בין מסה כבידתית למסה אינרציאלית, לא נמצאו כאלה ברמת דיוק גבוהה מאוד. מסיבה זאת אנחנו מניחים שהן זהות אחת לשניה.

***

אפילוג

לפי החוק השני של ניוטון, אם אני עומד על מד כוח בתוך מעלית, קריאתו תלויה בתאוצת המעלית. אם המעלית אינה מאיצה, קריאתו נתונה על ידי המסה שלי כפול תאוצת הנפילה החופשית (9.8 מטר לשניה בריבוע). במקרה והמעלית מאיצה כלפי מעלה, קריאת מד הכוח היא הקריאה ללא תאוצה ועוד המסה שלי כפול תאוצת המעלית.

%d7%a7%d7%a8%d7%99%d7%90%d7%aa-%d7%9e%d7%93-%d7%9b%d7%95%d7%97-%d7%91%d7%9e%d7%a2%d7%9c%d7%99%d7%aa

m מסה, g תאוצת הנפילה החופשית, a תאוצת המעלית ו-N קריאת מד הכוח.

יוצא מכך שקריאת מד הכוח במקרה שבו המעלית מאיצה ב-9.8 מטר לשניה בריבוע בחלל, מחוץ לשדה כבידה כלשהו, זהה למקרה של מעלית במנוחה בשדה הכבידה של על פניו של כדה"א.

המסקנה היא שאין אדם בתוך מעלית אטומה יכול להכריע האם הוא בשדה כבידה או במערכת מאיצה. שום ניסוי שיעשה לא יכריע בין המקרים.

ניסוי מחשבתי זה (או משהו דומה לו) הוביל את אלברט איינשטיין לחשוב שאם לא ניתן להבדיל בין כבידה לתאוצה, בין חוק הכבידה לחוק השני שדן בתאוצה, אולי מדובר בשני פנים של אותו הדבר. מה שמוביל גם למסקנה שמסה כבידתית ואינרציאלית אחת הן.

דבר זה הוביל את איינשטיין לנסח את עקרון השקילות ובהמשך תורת כבידה חדשה, וכל השאר היסטוריה.

***

נ.ב 1

חשוב לשים לב שמסה ומשקל הם אינם אותו הדבר למרות שאנחנו נוטים ביום יום להשתמש בהם באופן אנלוגי.

בתחנת החלל הבינלאומית האסטרונאוטים חווים חוסר משקל למרות שברור שיש להם מסה. משקל הוא כוח (שלרוב תלוי במסה) ומסה היא, …, ובכן מסה. הרגע דיברנו על זה.

להרחבה, מומלץ לצפות בסרטון הזה מערוץ היוטיוב Veritasium.

נ.ב 2

יחידת הק"ג למדידת מסה היא היחידה היחידה מכל היחידות הרשמיות שעדיין מוגדרת על ידי חפץ פיזי (גוש מתכת בצרפת שהוא הק"ג הרשמי). מצב זה אינו רצוי כי מישהו עלול להתעטש על הגוש ולשנות את הגדרת הק"ג (לא סביר). בשנים האחרונות עובדים מדענים ברחבי העולם על שתי שיטות חלופיות להגדרה קוסנפטואלית של הק"ג שלא תשען על חפץ פיזי.

להרחבה על אחת השיטות, מומלץ לצפות בסרטון הזה מערוץ היוטיוב Veritasium.

:קטגוריותכללי תגיות: , , ,

מראה מראה שעל הקיר, מי הכי מחזירה בעיר? על מראה דיאלקטרית

מה אתם רואים כאשר אתם מביטים במראה? את הבבואה שלכם.

מה הייתם רואים אילולי היתה המראה תלויה על הקיר מולכם? את הקיר.

במילים אחרות, מה שאתם בעצם רואים זה אור שהגיע ממקור כלשהו (שמש, מנורה וכדומה) פגע בכם, יצא מכם, פגע במראה וחזר באופן מסודר לעין שלכם שם הפעיל חיישנים של אור שהמידע שהתקבל על ידם עוּבד במוח לתמונה מנטלית שהיא מה שאתם 'רואים'.

הקיר בולע חלק גדול מהאור ואת השאר מחזיר באופן לא מסודר.
[הערת שוליים 1: החזרה מסודרת מתאפיינת למשל בכך שאור שפוגע במשטח בזווית כלשהי, מוחזר ממנו באותה הזווית. בהחזרה לא מסודרת האור מפוזר לכל הכיוונים בצורה אקראית.]

mirror
תמונה 1: כד משתקף במראה. המקור לתמונה: ויקיפדיה, לשם הועלתה על ידי המשתמש Cgs.

איך מייצרים מראות כך שהאור יוחזר מהן בצורה רצויה? בעבר מראות יוצרו על ידי ליטוש אבל כיום יש שיטה הרבה יותר יעילה. לוקחים משטח שקוף וחלק, למשל זכוכית, ומצפים את אחד הצדדים שלו בשכבה של חומר מתכתי. סוג ותכונות החומר המתכתי יקבעו את איכות ההחזרה בצבעים שונים. ציפוי אלומיניום, למשל, מחזיר כ-90% מהאור בכל הצבעים הנראים. כסף, לעומת זאת, מחזיר טוב יותר ברוב הצבעים (95-99%) אבל בכחול מחזיר פחות טוב (פחות מ-90%).

אז מראות רגילות מחזירות אור בצורה מסודרת ובאחוזים גבוהים, אבל גבוה הוא לא תמיד מספיק גבוה. ישנם יישומים מדעיים וטכנולוגיים בהם 99% זה קטסטרופה. מה אז? ישנה דרך לקבל החזרה טובה אפילו יותר מ- 99.99% מהאור, אבל יש לזה מחיר.

איך זה עובד ומהו המחיר? בהמשך.

ראשית נתחיל בהתחלה, וההתחלה הפעם היא במקום לא צפוי.

***

פולס על חבל

נניח שאתם אוחזים בקצהו של חבל ארוך שקצהו השני מעוגן לקיר. משיכה מהירה של קצה החבל ימינה והחזרתו למקומו המקורי מייצרת פולס (חלק של החבל שלא נמצא על הקו הישר) שנע לאורך החבל הלוך ושוב. שימו לב שהמולקולות שמרכיבות את החבל אינן נעות לאורך החבל. הדבר היחיד שנע לאורך החבל הוא הפולס (ראו שניות 00:32-01:07 בסרטון 2). בדומה, כאשר עובר גל מקסיקני במגרש כדורגל, הצופים אינם מחליפים מקום ישיבה במגרש. מה שזז הוא הפולס, כלומר אילו מהצופים מתרומם ומריע בכל רגע.

סרטון 2: פולסים נעים הלוך וחזור על גבי קפיץ (בין שניות 00:32-01:07). הסרטון המלא מציג מורה לפיזיקה שחוקר ביחד עם כיתתו פולסים שנעים על גבי חבל שבעצמו נע. שווה הצצה.

אם התאום המרושע שלי עומד רחוק ממני אך צמוד לחבל אוכל לסטור לו על ידי שליחת פולס לאורך החבל. כאשר הפולס יגיע אליו, חלקי חבל יצאו מהקו הישר (שיווי המשקל), יפגעו בפניו של התאום ויכאיבו לו. כלומר, הצלחתי להעביר אנרגיה (ותנע) לאורך החבל מבלי להעביר חומר שיישא אותה עליו. לדבר הזה אנחנו קוראים גל.

דבר נוסף שאני יכול לעשות הוא להסית את קצה החבל משיווי משקל בקצב קבוע. סדרה של פולסים, ימינה ושמאלה, תצא מקצה אחד של החבל במרווחים שווים ותנוע לאורכו, אחד אחרי השני (ראו איור 3). לדבר הזה אנחנו קוראים גל מחזורי, וניתן לאפיין אותו על ידי מספר תכונות. מהירות ההתקדמות של הפולסים לאורך התווך (כלומר החבל), תדירות (קצב הופעת הפולסים מהמקור) ואורך הגל (המרחק הקבוע בין שתי נקודות זהות על גבי המחזור). התדירות נקבעת על ידי המקור, המהירות על ידי תכונות התווך ואורך הגל על ידי השניים הראשונים.

%d7%a4%d7%95%d7%9c%d7%a1%d7%99%d7%9d-%d7%9e%d7%aa%d7%a7%d7%93%d7%9e%d7%99%d7%9d-%d7%a2%d7%9c-%d7%97%d7%91%d7%9cאיור 3: מבט על על יד שמנענעת קצה של חבל וגורמת לגל להתקדם על גבי החבל. הפולסים 'מרובעים' כי זה מה שיש ביכולתי לצייר בזמן סביר.

התאבכות

מה קורה כאשר שני פולסים 'פוגשים' אחד את השני על החבל? ההשפעה של שניהם מתחברת (מכונה בעגה: סופרפוזיציה). נבחן נקודה בודדת על החבל. אם בנקודה זאת פיסת החבל היתה אמור לסטות משיווי משקל בסנטימטר אחד עקב פולס א' ובאותו הרגע גם בשני סנטימטרים עקב פולס ב', היא תסטה בשלושה סנטימטרים. מאותה סיבה, אם הנקודה היתה אמורה לסטות בסנטימטר ימינה עקב פולס א' ובשני סנטימטר שמאלה עקב פולס ב', היא תסטה סנטימטר שמאלה. לאחר שהפולסים חלפו אחד על פני השני וכבר אינם חופפים במרחב, הם חוזרים לצורתם המקורית.

אם כך, כאשר שני פולסים זהים נפגשים על גבי חבל הם יתחברו אם הם בכיוון סטיה זהה (במופע זהה) ויתחסרו אם הם במופע הפוך. מסקנה נוספת היא ששני גלים מחזוריים זהים שנעים באותו כיוון ואחד מוסט ביחס לשני באורך גל שלם יחזקו אחד את השני, דבר המכונה 'התאבכות בונה' (ראו איור 4, שמאל). שני גלים מחזוריים זהים שנעים באותו כיוון ומוסטים אחד ביחס לשני בחצי אורך גל 'יעלימו' אחד את השני, דבר המכונה 'התאבכות הורסת' (ראו איור 4, ימין).

%d7%94%d7%aa%d7%90%d7%91%d7%9b%d7%95%d7%aa
איור 4: התאבכות בין שני גלים. משמאל שני גלים המוסטים אחד ביחס לשני בכפולה כלשהי של אורך גל שלם ולכן עוברים התאבכות בונה. מימין שני גליה המוסטים אחד ביחס לשני בכפולות של חצי אורך גל ולכן עוברים התאבכות הורסת. המקור לאיור: ויקיפדיה, לשם הועלה ועובד על ידי המשתמשים Haade, Wjh31, Quibik, עם כותרות שלי בעברית.

מעבר תווך של גלים

מה קורה כאשר פולס על חבל מגיע לקצה תווך, כלומר לקיר? הוא יוחזר חזרה בכיוון ההפוך, אבל באיזה צורה? לשאלה הזאת יש שתי תשובות שתלויות האם הקצה מקובע או שהוא חופשי לנוע. כדי לייצר את המקרה הראשון פשוט נעגן את הקצה השני לקיר. את המקרה השני נקבל למשל אם בקצה החבל יש טבעת שמושחלת על מוט. הטבעת יכולה לנוע לאורך המוט ובניצב לחבל (מחוץ לשיווי משקל) אך לא קדימה ואחורה לאורך החבל.

מסתבר שכאשר פולס מגיע לקצה קשור הוא חוזר בצורה הפוכה ממה שהוא הגיע. הסיבה לכך היא שתנאי השפה מכתיבים שחיבור הגלים בנקודה הקשורה חייב לצאת אפס, ללא תלות במצבו של הגל הפוגע. אם כך, פולס שמאלי חוזר מימין ולהפך (ראו איור 5א ו-5ב). הדבר מכונה בעגה 'היפוך מופע' או 'היפוך פאזה'. אם הקצה חופשי, הפולס חוזר באותה צורה שהוא הגיע. כלומר, פולס שמאלי חוזר משמאל ופולס ימני חוזר מימין, ללא היפוך מופע. ניתן לראות את התופעות האלה גם בסרטון 2 למעלה.

שימו לב שהיפוך מופע של גל מחזורי שקול להסטתו בחצי אורך גל, כך שכל מקסימום הופך למינימום וכדומה.

%d7%94%d7%97%d7%96%d7%a8%d7%94-%d7%a9%d7%9c-%d7%a4%d7%95%d7%9c%d7%a1-%d7%9e%d7%a7%d7%99%d7%a8
איור 5: החזרה של פולס מקיר. חלק א' מתאר את הפולס הנע מהיד לכיוון הקיר. חלק ב' מתאר את הפולס החוזר מהקצה קשור לאחר היפוך מופע. חלק ג' מתאר את הפולס החוזר מקצה משוחרר ללא היפוך מופע.

מה קורה כאשר התווך לא מסתיים, אלא משתנה לתווך אחר? לדוגמה, חבל א' קשור בקצהו לחבל ב' ששונה ממנו בתכונותיו. בהגיעו של הפולס לקצה התווך, חלקו יחזור כפולס קטן יותר וחלקו יעבור לחבל השני כפולס קטן יותר. הפולסים בכל תווך מקיימים את תכונות התווך בהם הם נמצאים.

ראשית נציין שכאשר פולס נע על תווך שצפיפות המסה שלו נמוכה (חבל קל) אז מהירות התקדמות הפולס עליו גבוהה. כאשר פולס נע על תווך שצפיפות המסה שלו גבוהה (חבל כבד) אז מהירות התקדמות הפולס עליו נמוכה.

האם הפולסים החוזרים יתהפכו או שלא יתהפכו? שוב נקבל שתי תשובות שתלויות בתנאים. כאשר פולס נע על חבל קל ופוגש חבל כבד הוא חוזר כמו מקצה קשור, כלומר עובר היפוך מופע (ראו איור 6, שמאל). כאשר פולס נע על חבל כבד ופוגש חבל קל הוא חוזר כמו מקצה משוחרר, כלומר אינו עובר היפוך מופע (ראו איור 6, ימין). הפולס שעובר לתווך השני לעולם לא עובר היפוך מופע.

%d7%a4%d7%95%d7%9c%d7%a1-%d7%91%d7%9e%d7%a2%d7%91%d7%a8-%d7%aa%d7%95%d7%95%d7%9a
איור 6: התנהגות פולס במעבר תווך. (1) משמאל פולס נע בחבל קל, פוגש חבל כבד ומוחזר עם היפוך מופע. (2) מימין פולס נע בחבל כבד, פוגש חבל קל וחוזר ללא היפוך מופע. לא הקפדתי על הקטנת הפולסים לאחר מעבר התווך. אתם תסלחו לי, נכון?

אוקיי, אז איך בשם כל השדים והרוחות קשור כל זה למראה?!

***

אור הוא גל

אז מסתבר שהאור שאנחנו רואים הוא בעצם גל אלקטרומגנטי באורכי גל שבין 400 ל-700 ננומטר. עסקתי בעבר בשאלה מהו אור ומה התווך בו הוא נע. מה שחשוב לנו כרגע הוא שאור הוא גל וככזה מתנהג כמו פולס או גל מחזורי על גבי חבל.

כאשר גל אור עובר מתווך אחד למשנהו, למשל מאוויר לזכוכית, חלק מהגל עובר וחלק מוחזר. אחוז ההחזרה הוא כמובן נמוך כאשר האור פוגע בניצב למשטח של חומר שקוף (כלומר עם בליעת אור מועטת). מבחינת האור, ההבדל בין תווך שקוף אחד למשנהו נובע ממהירות התקדמות הגל בתוכם. בואקום נע האור במהירות האור, במים נע לאט יותר פי 1.33 ובזכוכית פי 1.5. בדומה להחזרות על גבי החבל, כאשר אור נע בתווך איטי ופוגש מהיר, הוא מוחזר ללא היפוך מופע. כאשר האור נע בתווך מהיר ופוגש איטי הוא חוזר עם היפוך מופע. לדוגמה, אור שנע באוויר, פוגע בזכוכית ומוחזר יעבור היפוך מופע, אך אור שנע בזכוכית ופוגע באוויר (בקצה הזכוכית) יחזור ללא היפוך מופע.

כעת באה קומבינה מס' 1

נניח שיש לנו שכבת זכוכית שקופה שאותה נצפה בשכבה שקופה מחומר אחר שבו מהירות התקדמות האור נמוכה יותר מזו שבזכוכית. נדאג שעובי שכבת הציפוי תהיה רבע אורך גל, כלומר שאורכו של מחזור שלם של הגל הוא פי 4 מעובי השכבה. אור שמגיע בכיוון ניצב מהאוויר פוגע בגבול אוויר-ציפוי, רובו עובר לציפוי וחלקו הקטן מוחזר לאוויר עם היפוך פאזה. החלק שעבר פוגע בגבול ציפוי-זכוכית, רובו עובר לזכוכית וחלקו הקטן מוחזר לציפוי ללא היפוך פאזה ואז רובו יוצא החוצה לאוויר. גל האור שהוחזר לאוויר וגל האור שיצא לאוויר מתוך שכבת הציפוי מתחברים אחד עם השני. הראשון עבר היפוך מופע עקב ההחזרה. השני לא עבר היפוך אבל צבר פיגור של חצי אורך גל עקב המסע הלוך ושוב בתוך הציפוי (ראו איור 7). אם כך, גלי האור שחוזרים מהשכבות עוברים התאבכות בונה וגל האור המוחזר חזק יותר ביחס למקרה שבו אין ציפוי. כלומר, הוספת הציפוי הגדילה את כמות האור המוחזר.

%d7%94%d7%a9%d7%a4%d7%a2%d7%aa-%d7%a9%d7%9b%d7%91%d7%aa-%d7%a8%d7%91%d7%a2-%d7%90%d7%95%d7%a8%d7%9a-%d7%92%d7%9c
איור 7: השפעת שכבת רבע אורך גל על החזרות. באיור מוצגות שתי החזרות. אחת מגבול אוויר ציפוי שעוברת היפוך מופע ושניה מגבול ציפוי-זכוכית שלא עוברת היפוך מופע אך צוברת פיגור של חצי אורך גל. שתי ההחזרות עוברות התאבכות בונה באוויר בדרכן אל העין שלנו.

[הערת שוליים 2: בהסבר אני מתעלם מהחזרות פנימיות מסדר גבוה יותר. ניתן לסכום את התרומות ההולכות וקטנות ולראות שהכול עדיין מסתדר.]

כעת באה קומבינה מס' 2

ההחזרה בעקבות הוספת הציפוי מוגברת, אך היא נמוכה מלכתחילה. כדי להגביר את האפקט נרצה להוסיף עוד ועוד שכבות של ציפוי שיחזירו עוד ועוד מהאור באותה צורה. אך על כל שכבת ציפוי אנחנו צריכים להוסיף גם שכבת מצע של זכוכית. תפקידה של הזכוכית, מלבד היותה המצע לשכבות הציפוי, יהיה כעת לגרום להעברה מקסימלית של אור הלאה. בדיוק הפוך מתפקידה של שכבת מראה. 'הקסם' הוא שאם נבחר את עובי שכבת המצע להיות רבע אורך גל היא תייצר בדיוק אפקט הפוך לשכבת הציפוי ותעביר את כל האור. למעשה מדובר בדיוק באותו תרגיל כמו מקודם רק שהפעם סדר השכבות וההחזרות הפוך כך שגלי האור המתחברים מחוץ לזכוכית עוברים התאבכות הורסת (ראו פירוט באיור 8). אם הגלים החוזרים הורסים אחד את השני, זה אומר שכל האור בעצם עובר הלאה. בדיוק בעיקרון הזה נעשה שימוש בציפויים נגד החזרות על עדשות משקפיים (Anti-reflective coating).

anti-reflection-coating
איור 8: ציפוי למניעת החזרות. באיור מוצגות שתי החזרות. אחת מגבול אוויר ציפוי שעוברת היפוך מופע ושניה מגבול ציפוי-זכוכית שגם עוברת היפוך מופע וגם צוברת פיגור של חצי אורך גל ולכן סה"כ מוזזת באורך גל שלם. שתי ההחזרות עוברות התאבכות הורסת באוויר בדרכן אל העין שלנו, כלומר אין החזרות.

השורה התחתונה היא שכל זוג שכבות שנוסיף, זכוכית-מצע וציפוי, שתיהן בעובי רבע אורך גל, יגבירו את אחוז ההחזרה. נוכל להוסיף עד ועוד שכבות עד לקבלת החזרה גבוהה הרבה יותר מזו של מראות מתכת. מכיוון שמדובר באורכי גל מאוד קצרים, עובי המבנה כולו נשאר דק מאוד. המבנה הזה מכונה בעגה: מראה דיאלקטרית (Dielectric mirror או Distributed Bragg reflector).
[הערת שוליים 3: לבעלי הכרות מוקדמת עם החומר אעיר שהמבנה הוא בעצם Photonic crystal חד מימדי.]
[הערת שוליים 4: לא מובטח לי שהגלים המתחברים מחוץ לשכבות הם זהים (מבחינת עוצמת התנודה) ולכן ההתאבכות, בונה או הורסת, אינה מושלמת. בד"כ רצוי ראשית לחשב את מהירות התקדמות האור הדרושה בשכבת הציפוי לקבלת תוצאות אופטימליות (בעיקר בציפוי anti-reflection) אך לא אעסוק בכך כאן. לבעלי הכרות מוקדמת עם חומר אעיר שהחישוב זהה לתיאום אימפדנסים בקו תמסורת על ידי שנאי רבע אורך גל.]

אז מה המחיר שיש לשלם?

זכרו שעובי השכבות צריך להיות רבע אורך גל. אם כך, המראה שלנו מושלמת, אבל רק עבור אורך גל בודד! אם נדייק, עבור מספר שכבות רב יש טווח של אורכי גל שיוחזרו, אבל טווח זה מוגבל מאוד ביחס למראה רגילה. כיום יודעים לייצר מראות דיאלקטריות לטווח רחב יחסית של אורכי גל אבל הן קטנות בגודלן, יקרות ומשמשות בעיקר למעבדות וליישומים טכנולוגיים עתירי ידע.

אבל מסתבר שלא הכול יקר. יש דברים שנוכל לקבל בחינם. קחו למשל את הפרפר הצבעוני הזה. הצבעים המטאליים של הכנפיים שלו אינם נובעים מפיגמנטים, אלא ממבנה מורכב של שכבות קשקשים שמייצרים מראות דיאלקטריות שמחזירות רק צבעים מסוימים. יש מה ללמוד ממנו.

bluemorphobutterfly
תמונה 9: פרפר מסוג morpho peleides. המקור לתמונה: ויקיפדיה, לשם הועלה על ידי המשתמש Asturnut.

***

תודות לדר. ערן גרינולד על ביאור קושיות ותמיכה מדעית.

כל הטעויות ברשימה הן שלי ועל אחריותי בלבד…

מלך המתגים – על עקרון הפעולה של טרנזיסטור MOSFET

בחודש הבא יחגוג הבלוג 5 שנים להיווסדו. במילים אחרות, אני כותב פה כבר 5 שנים. פיסת חיים.

%d7%a2%d7%95%d7%92%d7%aa-%d7%99%d7%95%d7%9e%d7%95%d7%9c%d7%93%d7%aa
איור 1: עוגת יומולדת עם 5 נרות. המקור לאיור: clip art מה-powerpoint.

העובדה הזאת גרמה לי לשאול את עצמי האם אני זוכר את כל מה שכתבתי כאן. האם אני אעבור בחינה על החומר שכתוב בבלוג. רמז  לסיכויי ההצלחה שלי במבחן כזה קיבלתי לא מזמן.

תהיתי לעצמי האם כתבתי בעבר הסבר על עקרון הפעולה של טרנזיסטורים. חשבתי שכן, אבל לא הייתי בטוח. האמת המביכה היא שכדי להחליט הייתי צריך לעשות חיפוש באתר של עצמי. גיליתי להפתעתי שמעולם לא כתבתי עליהם, אלא רק כנושא צדדי קצר כדי להסביר משהו אחר, למשל כשסיפרתי על זיכרון פלאש או על מימוש של שערים לוגיים. המצב קשה.

אז כמו שכבר הבנתם הנושא הפעם הוא עיקרון הפעולה של טרנזיסטורים, כאשר אתמקד בסוג שנקרא MOSFET שזה קיצור נפלא לזוועה הבאה: 'Metal-oxide-semiconductor field-effect transistor'. כמו כן אתמקד בפעולה שלו כמתג, מכיוון לדעתי אלה הן הדוגמאות החשובות והפשוטות ביותר.

הרשימה הפעם מעט ארוכה מהרגיל. הסיבה לכך היא הרצון שלי לתת רקע איתן שיאפשר הבנה ללא קשר לידע מוקדם. מהסיבה הזאת הקפדתי להפריד את הרשימה למקטעים שכל אחד מהם מתחיל בשאלה שמתארת היטב מה מטרתו. הקורא יכול לרפרף בנוחות ולבחור לדלג על מקטע שדן בשאלה שאותה הוא כבר מכיר.

***

מהו טרנזיסטור?

לעניינינו, טרנזיסטור הוא מתג חשמלי שביכולתו לווסת זרימת מטענים חשמליים. הטרנזיסטור הוא אבן הבסיס לבניית שערים לוגיים ומכאן לכל יחידות המחשב (מעבד, זיכרון וכולי). מדובר ברכיב חשמלי בעל שלושה חיבורים חיצוניים שאותם נסמן באותיות S,D ו-G שהם קיצור ל-source, drain ו-gate בהתאמה.

נוח לחשוב על הטרנזיסטור כעל ברז ששולט על זרימת מים בצינור, כאשר המים מסמלים זרם חשמלי. בצינור יש לחץ ולכן מים יזרמו דרכו אלא אם כן שמנו מחסום, למשל ברז שחוסם את המעבר. כלומר, פתיחת הברז תשחרר את החסימה ותאפשר את זרימת המים. הטרנזיסטור מחובר במעגל חשמלי כך שבין הרגליים S ו-D ישנו מתח חשמלי כך שאם הוא פתוח, זרם חשמלי יזרום דרכו ללא הפרעה (משול ללחץ בצינור). חיבור ה-G משמש כידית הברז. מתח חיובי על רגל ה-G (בד"כ ביחס ל-S) תגרום לפתיחת הברז ולזרימה חשמלית.

כיצד הפעלת מתח חשמלי על רגל G גורמת לפתיחת מחסום לזרם?

לפני שאענה על השאלה הזאת, אעבור דרך מספר תחנות ביניים. הסבלנות תשתלם.

***

מהו מוליך למחצה?

כמו שכתבתי בעבר, מוליך למחצה אינו מוליך ואינו חצי של שום דבר.

ההבדל העיקרי בין מוליכים למבודדים הוא שבחומרים מוליכים (למשל מתכות) ישנם תמיד כמות עצומה של אלקטרונים זמינים להולכה חשמלית. אין צורך להשקיע אנרגיה כדי לשחרר אותם מהאטומים. לעומת זאת, במבודדים האלקטרונים קשורים לאטומים ואינם זמינים. דמיינו את האלקטרונים לכודים בתוך בור שהוא האטום. ניתן לשחרר אותם אבל צריך להשקיע אנרגיה להרים אותם אל מחוץ לבור. ברוב המבודדים כמות האנרגיה שיש להשקיע היא כל כך גדולה כך שאם למשל נחמם אותו כדי להעניק לאלקטרונים אנרגיה כך שיוכלו לברוח מהבור, החומר עצמו יתפרק.

ישנם מספר חומרים מיוחדים שבהם המחסום שעליו אלקטרונים צריכים להתגבר כדי לצאת לחופשי הוא כל כך קטן כך שהאנרגיה התרמית שיש להם בטמפרטורת החדר מספיקה כדי לשחרר כמות גדולה מהם כך שניתן להעביר זרם חשמלי דרך החומר. חומרים אלה נקראים 'מוליכים-למחצה'. שימו לב שהמוליכים למחצה הם למעשה מבודדים. בטמפרטורות נמוכות הם אינם מוליכים כלל, ובטמפרטורת החדר יש להם מוליכות קטנה ביחס למתכות אך גדולה מאפס. הדוגמה הידועה ביותר למוליך למחצה הוא היסוד סיליקון (צורן), מספר 14 בטבלה המחזורית. הסיליקון הוא החומר העיקרי שמשמש את תעשיית השבבים לייצור מעגלים מודפסים ולכן לייצור טרנזיסטורים.

silicon
תמונה 2: גוש סיליקון. המקור לתמונה: ויקיפדיה, לשם הועלתה על ידי המשתמש Enricoros.

אחת מהתכונות החשובות של המוליכים למחצה בכלל ושל הסיליקון בפרט הוא היכולת לשלוט במוליכות החשמלית שלו ולקבע אותה כרצוננו. המוליכות החשמלית של מתכת, למשל, תמיד גבוהה ותלויה חזק בטמפרטורה. שתי תכונות אלה אינן רצויות אם ברצוננו לבנות רכיב חשמלי שיפעל בטווח רחב של מצבים.

***

כיצד שולטים במוליכות הסיליקון?

גביש הסיליקון מורכב מרשת מחזורית של קשרים קוולנטיים. לפי מיקומו בטבלה המחזורית הוא מייצר 4 קשרים עם 4 אטומים קרובים אליו. קשר קוולנטי הוא בעצם שיתוף של אלקטרונים עם אטום אחר.

ניתן להשתיל אטומים זרים לתוך המבנה הגבישי המסודר של הסיליקון בכמות נמוכה כך שהמבנה עצמו לא ישתנה, כלומר תכונות החומר יישארו זהות. אם נבחר לזהם את הסיליקון למשל בזרחן, מספר 15 בטבלה המחזורית, האטומים הבודדים של הזרחן ישתבצו לתוך הסידור המחזורי של אטומי הסיליקון. אבל לזרחן יש אלקטרון אחד עודף בקליפת האנרגיה החיצונית ולכן לאחר היווצרות הקשר הקוולנטי יישאר אלקטרון אחד עודף שיהיה חופשי להולכה חשמלית. זיהום הסיליקון בסדר גדול של אטום אחד לאלף מספיק כדי להעלות את המוליכות באופן דרסטי מבלי לשנות את תכונות החומר. למעשה האלקטרונים החדשים נהיים הגורם הדומיננטי לכמות האלקטרונים הזמינים להולכה. בנוסף, עבור האלקטרונים שנוספו מספיקה טמפרטורה נמוכה מאוד ביחס לטמפרטורת החדר כדי לנתק אותם מהאטום ולכן כמות האלקטרונים הזמינים להולכה בחומר אינה מושפעת חזק משינויי טמפרטורה. אם כך, קיבלנו חומר שבו אנחנו קבענו את רמת ההולכה על ידי רמת הזיהום והיא אינה תלויה בטמפרטורה. בדיוק מה שנדרש לאלקטרוניקה.

ניתן לזהם סיליקון גם בחומר עם אלקטרון אחד פחות בקליפה החיצונית (למשל בורון, מספר 5 בטבלה, טור אחד שמאלה ביחס לסיליקון) כך שלאחר היווצרות הקשרים יהיה חוסר באלקטרון אחד. מבלי להיכנס יותר מדי לפרטים, החוסר מאפשר זרם מכיוון שהאלקטרונים יכולים לזוז דרך המקום הפנוי (כמו פאזל הזזה). נהוג לקרוא למקום הפנוי 'חור' ולהתייחס אליו כחלקיק בעל מטען חשמלי חיובי (או קווזי-חלקיק). מוליכים למחצה שזוהמו בחומרים 'מימין' ולהם אלקטרונים זמינים להולכה נקראים n-type וחומרים מזוהמים 'משמאל' ולהם חורים נקראים p-type. הזרם החשמלי במוליכים למחצה מורכב, אם כן, משני סוגים: זרם אלקטרונים וזרם חורים.

***

מהו קבל?

אחד הרכיבים הבסיסיים במעגלים חשמליים נקרא קבל. זהו רכיב בעל שני חיבורים למעגל וביכולתו לאגור אנרגיה חשמלית. בצורתו הפשוטה ביותר להסבר מדובר בשני לוחות מתכת שביניהם יש חומר מבודד כלשהו (ראו איור 3). כאשר נפעיל מתח חשמלי בין הלוחות, יצטבר מטען שווה בגודלו והפוך בסימנו על כל לוח כך שנוצר ביניהם שדה חשמלי. כמות המטען על הלוחות תלויה במתח החשמלי על הלוחות ובצורתו של הקבל ותכונותיו של החומר המבודד (האחרון מכונה בעגה 'קיבול').

%d7%a7%d7%91%d7%9c
איור 3: סכמה של קבל לוחות.

ההנחה שלנו בניתוח הקבל הוא ששני הלוחות הם מתכתיים ובעצם, במובן מסוים, מהווים המשך של החוטים במעגל. מתכות יכולות לספק כמות בלתי מוגבלת של אלקטרונים.

מה יקרה אם נחליף את אחד הלוחות המתכתיים לחומר שאינו מתכתי, לדוגמה מוליך למחצה?

***

מהו קבל MOS?

נניח והחלפנו את אחד מלוחות המתכת של קבל לוחות בלוח שעשוי מוליך למחצה. מה יקרה?

הקבל כמכלול יתנהג פחות או יותר אותו הדבר. מטען שווה והפוך יצטבר על הלוחות. אבל המוליך למחצה אינו מתכת והוא מתקשה לספק את האלקטרונים הדרושים. דבר זה מוביל לשינויים מעניינים בתוכו שאותם אנחנו נוכל לנצל.

הקיצור MOS בא במקום metal-oxide-semiconductor. הקבל הוא חומר מבודד (אוקסיד, תחמוצת סיליקון, בעצם זכוכית) בסנדוויץ' בין מתכת למוליך למחצה (ראו איור 4). כמובן שעל הסיליקון יש חיבור מתכתי למעגל החשמלי, אבל זה לא משנה לעקרון הפעולה.

%d7%a7%d7%91%d7%9c-mos
איור 4: סכמה של קבל MOS..

נניח ששכבת הסיליקון היא p-type, כלומר המטענים החופשיים בה הם 'חורים' בעלי מטען חשמלי חיובי. הפעלת מתח חיובי דורשת הצטברות מטען שלילי במוליך למחצה. מה שיקרה הוא שהחורים, שהם בעלי מטען חשמלי חיובי, ידחו ויעזבו את המקום. הם ישאירו אחריהם שכבה של אטומים מיוננים בעלי מטען שלילי שנקראת שכבת המיחסור (depletion), והיא זאת שתורמת את המטען הדרוש.

ככל שנגדיל את המתח, כך ידרשו עוד מטענים שליליים במוליך למחצה ושכבת המיחסור תתרחב. אם המתח המופעל מספיק גבוה (בעגה: מתח הסף) תהליך זה כבר אינו יעיל בגלל רוחבה הגדול של שכבת המיחסור ובמקום זאת יחלו להופיע אלקטרונים (ראו איור 5). כלומר, הפעלת מתח בעוצמה מספיקה יכולה לשנות את אופי המוליך למחצה. החומר כבר לא p-type אלא n-type, כלומר שינוי מחומר שמוליך חורים לחומר שמוליך אלקטרונים. תופעה זאת נקראת אינברסיה (inversion). הפוטנציאל החשמלי משתנה לעומק הרכיב וככל שמתרחקים מהאלקטרודה הוא קטן. לכן האינברסיה תופיע כשכבה דקה קרוב לאלקטרודה (רק באזורים בהם הפוטנציאל גבוה מספיק).

%d7%90%d7%99%d7%a0%d7%91%d7%a8%d7%a1%d7%99%d7%94
איור 5: הפעלת מתח גבוה ממתח הסף על קבל ה-MOS גורמת להיווצרות שכבת אינברסיה..

כעת יש לנו כבר את כל מה שאנחנו צריכים כדי לקבל את הטרנזיסטור.

***

מהו טרנזיסטור MOSFET?

היזכרו שכאשר הצגתי את טרנזיסטור ה-MOSFET כתבתי שיש לו 3 חיבורים: S,D ו-G. כדי לקבלו נוסיף למוליך למחצה בקבל ה-MOS פיסת סיליקון n-type משני צדדיו ונחבר כל אחת מהן למתח חיצוני. אחת הפיסות תסומן ב-S, אחת ב-D והמתכת מעל האוקסיד תכונה G (ראו איור 6).

mosfet
איור 6: סכמה של טרנזיסטור MOSFET.

ללא הפעלת מתח על G לא ניתן להעביר זרם בין S ל-D גם אם נפעיל מתח ביניהן מכיוון שנקודות S ו-D מחוברות לסיליקון מסוג n-type שבו יעבור רק זרם אלקטרונים ופיסת הסיליקון המקורית מהקבל היא p-type ובה יעבור רק זרם חורים. הפעלת מתח מספיק גבוה על נקודה G תגרום להופעת שכבה דקה של n-type קרוב לקצה החיצוני של המוליך למחצה, תחבר בין S ו-D, ותשמש כתעלת הולכה של אלקטרונים (ראו איור 7). דעו כי האפקט הוא דרמטי. כאשר המתח על נקודה G נמוך ממתח הסף אין זרם, ומעל מתח הסף הזרם גדל באופן משמעותי כך שהטרנזיסטור יכול להיחשב כקצר, כלומר כחוט מתכתי מוליך זרם.

%d7%98%d7%a8%d7%a0%d7%96%d7%99%d7%a1%d7%98%d7%95%d7%a8-%d7%a4%d7%aa%d7%95%d7%97
איור 7: הפעלת מתח גבוה ממתח הסף על ב-G גורמת להיווצרות שכבת אינברסיה ולפתיחת הטרנזיסטור לזרם חשמלי.

אם כך, על ידי הפעלת מתחים מתאימים על נקודה G ניתן למתג את הזרם דרך הטרנזיסטור בין מצבים 'פתוח' ו-'סגור'. ברז אלקטרונים מושלם ונוח לתפעול.

הערה לסיום: שימו לב שהמעבר שעשיתי בין קבל MOS לטרנזיסטור MOS הוא קונספטואלי לשם הסבר ברור. לא כך בונים טרנזיסטור MOSFET.

הדרך הטובה לבנות טרנזיסטור MOSFET מהסוג שתואר כאן הוא להתחיל מגוש סיליקון מסוג p ועל פני השטח לזהם שתי בארות קטנות של n. את החיבורים לאזורים השונים יש ליצור כלפי מעלה.

אבל אסיים כאן. ייצור טרנזיסטורים ותפעולם הוא נושא לרשימה אחרת.