ארכיון

ארכיון כותב

תנו לי מספיק גלגלות ואזיז את העולם ממקומו

התוכנית "מהצד השני" עם גיא זוהר, שמשודרת בערוץ כאן11, עוסקת בד"כ בביקורת ובבדיקת עובדות של דברים שנאמרים או נכתבים בתקשורת. בתאריך 12.01.22 שודר אייטם קצר והיתולי למחצה שעסק במשהו שנאמר במהלך פרק של התוכנית "הישרדות". באחת המשימות בתכנית נדרשו שלושה משתתפים להחזיק את עצמם מליפול למים באמצעות משיכה בחבל שעובר דרך מערכת גלגלות. המנחה הכריז מספר פעמים בדרמטיות על הקושי הרב במשימה שנובע מכך שעל המתחרים להחזיק את משקל גופם באמצעות החבל. גיא זוהר העיר ותיקן שמכיוון שיש שימוש במערכת גלגלות המתחרים אינם מחזיקים את משקל גופם המלא, אלא פחות מכך. הנה קישור לקטע הקצר (אורכו 02:30 דקות):

גיא זוהר מסתמך על דעת חכמים, והוא כמובן צודק. אבל למה? איך גלגלת יכולה להפחית משקל שיש להרים?

ברשימה זאת אנסה להסביר, דרך דוגמה תיאורטית פשוטה יחסית, כיצד שימוש בגלגלת יכול להקל על הרמת משקלים וגם מדוע לא ניתן להאיר את כל רמת-גן באמצעות טריק זה.

***

רוב ההסבר שלי נשען על החוק הראשון של ניוטון ולכן ראשית אסביר מהו ואנסה לשכנע שהוא נכון.

מהו החוק הראשון של ניוטון?

קחו בבקשה כוס שקופה וגולת משחק. הניחו את הגולה על משטח חלק וישר (למשל שולחן) והניחו את הכוס הפוכה מעל הגולה. כעת הניעו את הכוס כך שהגולה תחל לנוע במעגלים לאורך הדופן של הכוס. מה יקרה אם נרים את הכוס בפתאומיות? אם אתם לא בטוחים, ממליץ לנסות לפני שקוראים הלאה.

האינטואיציה של חלק גדול מאיתנו אומרת שלאחר הרמת הכוס הגולה תמשיך לנוע במעגלים, אבל מה שיקרה הוא שהגולה תנוע בקו ישר בכיוון התנועה שבה היתה רגע לפני הרמת הכוס.

החוק הראשון של ניוטון אומר שגוף לא ישנה את תנועתו כל עוד סך הכוחות עליו הוא אפס. הכוונה ב-"ישנה את תנועתו" היא ישנה את גודל מהירותו או את כיוון מהירותו. הסיבה שהגולה משנה את כיוון תנועתה בכל רגע היא שדופן הכוס מפעילה עליה כוח בכל רגע. ברגע הרמת הכוס הכוח נעלם והגולה מתמידה בתנועה שבה היא נמצאת באותו הרגע – תנועה בקו ישר לכיוון כלשהו, ללא שינוי בגודל המהירות או בכיוונה.

מה הכוונה ב-"סך הכוחות עליו הוא אפס"?

נניח שפועלים על גוף שני כוחות שווים בגודלם, אחד ימינה ואחד שמאלה. התוצאה במשמעות של שינוי תנועת הגוף (בניגוד למשמעות של שינוי צורה) תהיה זהה למקרה שבו לא מופעל עליו כוח כלל. לכן נהוג להגיד שסכום הכוחות במקרה זה הוא אפס, כי הכוח השקול למקרה זה הוא לא להפעיל כוח כלל.

כיצד נשתמש בחוק הראשון כדי להסיק גדלים של כוחות במערכת מכנית?

בואו ונחשוב על מקרה שבו אנחנו דוחפים מקרר והוא לא זז. מדוע המקרר לא משנה את מהירותו למרות שאנחנו מפעילים עליו כוח? כי יש עוד כוח בכיוון הפוך – כוח החיכוך. ומה גודלו של כוח חיכוך זה? נחזור לחוק הראשון של ניוטון שגורס שאם סך הכוחות על גוף הוא אפס הוא לא ישנה את תנועתו. אם כך ניתן להסיק מהחוק שכוח החיכוך פועל בכיוון מנוגד לכיוון הכוח שאנחנו מפעילים וגודלו שווה לגודל הכוח שאנחנו מפעילים כך שסכום הכוחות על המקרר הוא אפס.

במקרה אחר נתלה מקרר על חבל המשתלשל מהתקרה. מהו הכוח שצריך לפעיל החבל על המקרר כדי שלא ייפול? על המקרר פועלים שני כוחות מנוגדים, כוח הכבידה כלפי מטה וכוח החבל כלפי מעלה. אם כך, כדי שהמקרר לא ישנה את תנועתו ולא ייפול החבל צריך להפעיל כוח ששווה בגודלו לכוח הכבידה כך שסכום הכוחות יהיה שווה אפס, לפי החוק הראשון של ניוטון. מכאן גם נובע שאם אנחנו רוצים להחזיק ביד את החבל כך שהמקרר תלוי באוויר נצטרך להפעיל כוח בגודל ששווה לגודלו של כוח הכבידה שפועל על המקרר, כלומר כוח ששווה למשקל שלו.

[הערת שוליים – אני מניח בכל הדוגמאות שלי שמתיחות החבל זהה בכל נקודה לאורך החבל. ההנחה לא תמיד נכונה ולכן הערכים שאני אחשב אינם מדויקים]

האם הכוח שנצטרך להפעיל כדי להחזיק מקרר תלוי באוויר ישתנה אם נחזיק את החבל שמחזיק את המקרר דרך גלגלת?

נתבונן בכוחות שפועלים על המקרר במקרה זה. כוח כבידה למטה וכוח חבל/יד למעלה. מכיוון שאני מניח שמתיחות החבל אינה משתנה לאורכו (ראו הערת שוליים קודמת) התשובה אינה משתנה. כדי להחזיק את המקרר תלוי באוויר דרך גלגלת עלי להפעיל כוח ששווה לערכו של כוח הכבידה שפועל על המקרר, כלומר משקל המקרר.

נבחן מקרה שבו המקרר תלוי מהגלגלת, אך מוחזק בשתי נקודות על ידי החבל.

נתבונן בכוחות שפועלים על המקרר במקרה זה. כוח כבידה כלפי מטה כמו בכל הדוגמאות הקודמות. אבל הפעם החבל מפעיל על המקרר כוח בשתי נקודות שונות, כלומר מפעיל עליו פעמיים את הכוח שבו הוא מתוח. אם כך, בדוגמה המוזרה הזאת, בשונה מהדוגמאות הקודמות, החבל מתוח פחות (חצי מכוח הכבידה אם נניח שמתיחות החבל שווה בכל נקודה). זאת מכיוון שפועל על המקרר כוח כבידה כלפי מטה ופעמיים כוח החבל כלפי מעלה. החוק הראשון טוען שסך הכוחות חייבים להיות מאוזנים ולכן כוח החבל או מתיחותו במקרה זה קטנה יותר ממשקל המקרר. שימו לב שהמתיחות בחבל שמחזיק את הגלגלת לתקרה הוא עדיין שווה בגודלו למלוא המשקל.

כעת כל החלקים של הפאזל כבר הוצגו. נותר רק למצוא קונפיגורציה שבה נוכל לנצל את הטריק של הפחתת המתיחות בחבל וגם להחזיק את המקרר בכוח היד דרך החבל. לשם כך אנחנו זקוקים לעוד גלגלת ולכוח המצאה. למזלי מישהו כבר חשב על זה מזמן.

נבחן את המקרה הבא שכולל שתי גלגלות:

במקרה זה, במקום שהמקרר יהיה תלוי על שני קצוות של אותו החבל, המקרר תלוי על גלגלת שהיא זאת שתלויה משני נקודות של חבל. הפעם כדי להבין את המערכת נצטרך לבחון את הכוחות על הגלגלת שממנה תלוי המקרר. כוח הכבידה מהמקרר פועל עליה כלפי מטה ובדומה למקרה הקודם החבל מפעיל עליה פעמיים כוח כלפי מעלה. מכיוון שנתון שהגלגלת לא משנה את תנועתה, מתיחות החבל תהיה קטנה ממשקל המקרר כמו במקרה הקודם. אם כך, כדי להחזיק את המקרר תלוי ללא תנועה יש לפעיל על ידי היד פחות ממשקלו. קסם!

חידה1: חשבו על דרך להפחית אף יותר את הכוח שנצטרך להפעיל על ידי הוספת עוד גלגלת.

למעשה ניתן להוסיף עוד ועוד גלגלות ולהפחית עוד ועוד את כמות הכוח שיש להפעיל כדי להחזיק את המקרר תלוי (אם כי, יש להתחשב גם בכוחות חיכוך שמתווספים שלא לקחנו בחשבון).

נקודה לסיום:

אם כל מה שהצגתי נכון, אפילו בקירוב, מדוע אנחנו לא עושים זאת כל הזמן? מדוע אנחנו לא מושכים מקררים דרך כמות גדולה של גלגלות?

קודם כל, אנחנו אכן עושים זאת, כפי שניתן לראות למשל במשימת ההישרדות בסרטון.

אבל שימו לב שבדוגמה האחרונה כדי להעלות את המקרר בחצי מטר יש למשוך את החבל במטר שלם. החלק של החבל מימין לגלגלת צריך להתקצר בחצי מטר, וגם החלק משמאל ולכן ביחד מטר אחד. כלומר שבהתקן הזה אנחנו חוסכים בכמות הכוח שיש להפעיל אבל מפסידים בכמות המרחק שלאורכו יש להפעיל את הכוח הזה.

כוח כפול המרחק שלאורכו הוא מופעל זה בדיוק ההגדרה הפיזיקלית של מונח העבודה. מכך ניתן לראות שלא ניתן לחסוך בכמות העבודה שיש לבצע כדי להרים מקרר לגובה, ולהגדיל את האנרגיה הפוטנציאלית הכובדית שלו, באמצעות הוספת עוד ועוד גלגלות. לכן לא נוכל להאיר את כל רמת-גן באמצעות רכישת כמות גדולה של גלגלות ומקררים. חבל.

נ.ב – חידה2: אדם יושב על מקרר ומחזיק אותו תלוי באמצעות חבל שעובר דרך גלגלת וקשור למקרר כפי שניתן לראות באיור. א) מה התנאי שהמקרר לא ייפול? ב) במידה והמקרר באמת לא נופל, כמה כוח צריך להפעיל האדם שיושב על המקרר?

:קטגוריותכללי תגיות: , ,

לא רק פלוצים – על הספר 'Gulp' – יומן קריאה

אזהרה: ברשימה זאת אני שוב מזכיר (בקצרה) הפרשות. אני מעודד את כל מי שזה לא בא לו טוב, לדלג. נשבע שזה צירוף מקרים. אבל מי יודע. אולי אני חווה נסיגה לשלב מוקדם יותר בהתפתחות שלי. חוזר לילדות.

***

מערכת העיכול היא מקור בלתי נדלה לבדיחות, גסויות, מבוכה, אבל גם לעובדות מדעיות מעניינות על גוף האדם.

למשל:

הקיבה שלנו מכילה חומצה ואנזימים המפרקים כל מיני חומרים אורגניים. מדוע הקיבה אינה מפרקת את עצמה? (רמז: אכן מפרקת).

האם כולם צודקים ובאמת לא כדאי לנו לאכול את ההפרשות שלנו? (רמז: לבני אדם, נכון למדי, לעכברים, למשל, לא כל כך בטוח).

כילדים קיבלנו לפעמים תרופות "מהפתח התחתון". האם אפשר גם לאכול משם? (רמז: לא).

מדוע כשאנחנו מתאפקים הרבה זמן, אנחנו עלולים לחוות עצירות? (רמז: ספיגת נוזלים).

מדוע הגזים שלנו דליקים? (רמז: קשור לפירוק חומרים במערכת העיכול).

***

את כל הפנינים האלה דליתי מהספר: "Gulp" מאת מארי רואץ'. הספר תורגם לעברית בשם "שלוק".

צילום מסך של אתר לרכישה דיגיטלית של הספר

מארי רואץ' היא עיתונאית וסופרת מוערכת, ככל שהצלחתי להבין. הספר, לדעתי, אינו כתוב כספר מדע פופולרי, אלא כסוג של רפורטז'ה עיתונאי. למה אני מתכוון? למשל: פגשתי את האנשים האלה והאלה, הם לבשו כך וכך, השמות שלהם מצחיקים, הם עושים דברים מצחיקים, הם חוקרים נושאים מצחיקים, גרם לי לחשוב על כך וכך. הנה כמה בדיחות כדי להפיג את המבוכה. אה, והם גם סיפרו לי כמה דברים מעניינים על מערכת העיכול. אבל בעיקר על הנושא המוזר שבו הם עוסקים.

ניכר שהכותבת עסוקה בכל מיני אנשים שהיא פגשה וראיינה ובנושאי קצה משעשעים יותר או פחות. נושאי הפרקים הם די אקראיים לטעמי ולא מסודרים או מחולקים לפי רמת חשיבות (למשל, למיטב זכרוני, 3 מתוך 18 הפרקים מוקדשים לפלוצים…). קשה לספוג ככה מידע מסודר על מערכת העיכול. לדעתי, מה שנשאר בסוף מקריאת הספר זאת שורה של אנקדוטות משעשעות על מערכת העיכול שאותן תוכלו לפזר במפגשים חברתיים (מסוג מסוים) כדי לשעשע או להישמע ידענים (כמו שאני עשיתי בתחילת הרשימה). אני לא חושב ש-"ידע אמיתי" (מה שזה לא יהיה) או הבנה מעמיקה או רוחבית נשארים מקריאת ספר כזה. הוא יכול לתפקד בעיקר כשעשוע לזמן מה אם אתם מתחברים לנושא או לסוג ההומור של הכותבת (אותי הוא התיש די מהר).

חשוב לציין שכן למדתי כמה דברים שלא ידעתי על מערכת העיכול ואני חושב שחלקם לפחות יישארו איתי.

לסיכום, אם אתם רוצים קריאה קלילה ולא מחייבת, ומתחברים להומור של הכותבת, יכול להיות שזה הספר בשבילכם ובשבילכן. אם, לעומת זאת, אתם מחפשים מידע, אמנם פופולרי, אבל יותר סדור ומעמיק, כדי ללמוד על מערכת העיכול, אולי כדאי לחפש ספר אחר.

***

בשולי הדברים, הספר הזה הוא השני שקראתי (והראשון בנושא מדע פופולרי) בצורה אלקטרונית על גבי הטלפון שלי. הופתעתי לטובה מחווית הקריאה. יש בצורת קריאה זאת יתרונות שלא חזיתי. עם זאת, כשבאתי לכתוב רשימה זאת היה לי פחות נוח למצוא דברים ולהיזכר בדברים כי קשה לדפדף במהירות בספר, כמו בכזה מנייר. לפחות עבורי. אני מניח שהדור שיבוא אחרי לא יבין מה הבעיה שלי.

סיפור שמתחיל, במחילה מכבודכם, ברקטום של בונה וגם נגמר שם

במוסף 7 ימים של ידיעות אחרונות (03.12.21) הופיע טור של העיתונאית דנה ספקטור ובו היא סיפרה על סיבוב קניות בסופרמקרט מוזל עם משפיענית רשת חרדית (כך מתוארת במקור), במטרה ללמוד איך להצליח לחסוך באמצעות קנייה נבונה.

הטור נפתח בשאלה הפרובוקטיבית ששואלת המשפיענית את הכותבת: "את יודעת ממה באמת עשויה תמצית וניל של אפייה?". והתשובה? נקרא יחד את המקור כי ספקטור יודעת דבר או שניים על כתיבה:

אז האם באמת יש בעוגתה הבחושה של ספקטור רקטום של בונה, או משהו שהופק מבלוטה בישבנו של בונה? התשובה היא לא. ההסבר בהמשך. אבל השאלה שמעניינת אותי יותר היא איך בכלל הגענו לשם. אנסה להסביר ברשימה זאת.

אגב, אם מישהו מהקוראים והקוראות מכיר את הכותבת, הוא מוזמן לשלוח לה צפירת הרגעה. יש מספיק דברים אמיתיים לדאוג בגללם בחיים האלה.

אבל לפני שאגיע לעיקר – הבהרה חשובה. אין לי שום טענה אל דנה ספקטור, או אל המרואיינת בכתבה. מדובר בטור אישי, עם נגיעות הומוריסטיות, שעוסק בלייפסטייל. הוא חינני בדרכו, לחובבי הז'אנר, ומטרתו טובה. אין הוא מתיימר להיות מדעי או חדשותי וודאי שלא עבר בדיקת עובדות (fact checking). ובכלל, האם יש כתבות שעוברות בדיקת עובדות בימינו? אני לא יודע את התשובה, אבל לדעתי לא.

כעת נצלול לתוך הפרטים (חשבתם שנצלול לאחוריו של הבונה, נכון? אתם גסי רוח…)

תמונה של בונה אמריקאי. המקור לתמונה: ויקיפדיה, לשם הועלתה על ידי המשתמש Steve from washington, dc, usa.

***

כל מי שקורא פה מידי פעם יודע שיש לי חולשה לבדיקת עובדות (במיוחד מדעיות) ומהניסיון שלי כאשר משהו נשמע לא הגיוני כלל, לרוב הוא כנראה פשוט לא נכון. במיוחד אם הוא הופיע בעיתון. כמו הפעם ההיא שמישהו סיפר לי שקרא בכתבה בעיתון שנאס"א השתמשה בחמאת בוטנים לאיטום חללית (אל תשאלו, טעות בתרגום). לעיתונים יש נטייה לסנסציוני כדי למשוך את תשומת הלב. האינטרנט לא המציא את זה. רקטום של בונה? באמת? שם חשדתי.

אבל לפני שפוסלים על הסף, האם אין סיפורים מוזרים שמתבררים כנכונים? וודאי שיש. בהמשך אפילו אתן כמה דוגמאות. אבל מה שהטריד אותי הוא גם האיגיון שבטיעון. וניל המופק ישירות מצמח הוא אכן יקר ולכן לא תמצאו ממנו בסופרמרקט כמעט בכלל. צריך להפיק תחליף כימי תעשייתי בכמויות אדירות כדי לספק את הדרישה העצומה לחומר. חליבת אחוריו של יצור אקזוטי לא נשמעת לי כמו אפשרות זולה או נוחה יותר להפקת החומר.

האם אין אפילו גרעין של אמת בסיפור? הרי לכולם יש את הרגע שבו הם גילו שהג'לטין התמים שמשמש לכל מיני מתיקה מופק מעורות ועצמות של בעלי חיים (בישראל בעיקר מדגים בגלל בעיית הכשרות).

לא השתכנעתם שיש סיפורים מוזרים שלפעמים הם אמיתיים? אז אני ממליץ לכם לקרוא על סרטני הפרסה, בעלי הדם הכחול. הם נלכדים בהמוניהם ודמם נשאב ב-'מחלבות' ייעודיות כי יש בו חומר יקר מפז שמשמש אותנו לזיהוי של רעלנים בתרופות להזרקה, שתלים וכדומה. ואם לא בא לכם לקרוא אז ניתן להאזין לפרק הזה של הפודקאסט Radiolab על הנושא:

Baby Blue Blood Drive | Radiolab | WNYC Studios

תמונה של סרטן פרסה. המקור לתמונה: ויקיפדיה, לשם הועלתה על ידי המשתמש Didier Descouens.

בשלב זה אפתיע אתכם (אולי) ואומר שיש גרעין קטן של אמת בסיפור על הבונה, אבל התשובה היא עדיין – 'לא'. לא תמצאו שאריות בונה בסופר. הסבר בהמשך.

***

הדבר הבא שמשך את תשומת ליבי בקטע הקצר שציטטתי מהכתבה הוא שהמשפיענית והכתבת בדקו באינטרנט ומצאו מאמר ממגזין מכובד שתמך ברעיון הבונה כמקור לארומת וניל. אז פניתי לאינטרנט בעצמי וביצעתי חיפוש פשוט.

הכותרות של שני הקישורים הראשונים שהופיעו בחיפוש נראו כאילו הן מאשרות את הטענה.

כותרת מספר 1: (קישור למאמר)

"Where does vanilla flavouring come from? Beaver castoreum explained – and why it's used in cakes and icing"

הכותרת מייצגת את רוח הדברים ברוב הכתבה, אך שימו לב מה כתוב לקראת הסוף:

Is modern day vanilla made using beaver anal secretions?"

Internet fact checking site Snopes gave the claim that castorum is a commonly used food additive a rating of “mostly false”."

השורה התחתונה היא שיש גרעין של אמת בכך שיש חומר שנקרא " castoreum" שאכן ניתן להפיק מבלוטה בחלקו האחורי של בונה, ויש לו ארומה של וניל, אך מכיוון שהתהליך יקר ולא יעיל, אין בו כמעט שימוש. הסיכוי להיתקל בחומר בסופרמרקט הוא אפס.

כותרת מספר 2: (קישור למאמר מהנשיונל גיאוגרפיק, אני מנחש שזה המגזין המכובד שמוזכר במאמר)

"Beaver Butts Emit Goo Used for Vanilla Flavoring"

ולקראת סוף הכתבה:

" But getting a beaver to produce castoreum for purposes of food processing is tough… Due to such unpleasantness for both parties, castoreum consumption is rather small—only about 292 pounds (132 kilograms) yearly."

ולהוסיף חטא על פשע, אלה הן מילות הסיכום של המאמר:

"Still concerned you’re chowing down on beaver-bum goop? Because of its FDA label, in some cases, manufacturers don’t have to list castoreum on the ingredient list and may instead refer to it as “natural flavoring.” Yum."

שורה תחתונה – אף אחד לא אוכל שום דבר שמופק מבונה, אבל בואו נמכור לכם סיפור יפה ונפחיד אתכם קצת בשביל הקטעים.

רק כדי לסגור את הנקודה בצורה הרמטית אפנה שוב לאתר Snopes לסיכום העניין:

Does Vanilla Flavoring Come from Beaver Anal Secretions? | Snopes.com

ומי שמתעניין בתהליכים הכימיים שבאמת משמשים לייצור תעשייתי של ונילין יכול לקרוא על כך בדף הויקיפדיה הזה:

Vanillin – Wikipedia

***

אני מקווה שהצלחתי לשכנע מדוע גולש אקראי באינטרנט, שמחפש ריגושים, יכול להגיע למסקנה שהופיעה בכתבה לגבי מקור תמצית הווניל בסופרמרקט.

למה זה חשוב?

אולי זה לא חשוב. אבל המציאות היא שכשהאדם הממוצע קורא עובדה כזאת בעיתון, פעמים רבות היא נכנסת לו לראש. כאשר הוא ייזכר בה שוב בעתיד, סביר שלא יזכור מה היה המקור. ואז, במקום לתת לה משקל סבירות נמוך, כפי שהיה הגיוני לעשות, אנחנו נוטים לתת לה משקל גבוה. מה שנקרא בעגה Common knowledge.

אז מה נדרש כדי להתגונן מפני עובדות שגויות או מטופשות בעיתונות ו\או באינטרנט לדעתי?

קצת היגיון בסיסי, חוסר אמון מוחלט בכנות של אתרי החדשות והעיתונות ובמחויבות שלהם לבדיקת עובדות, סבלנות לגשת ולבדוק מקורות (לקח לי כ-15 דקות), אוריינות רשת, אוריינות מדעית. לא בדיוק דברים שנולדים איתם, בלשון המעטה.

האם הלימודים בבית הספר (ליבה או לא ליבה) מכינים אותנו להתמודדות כזאת עם מידע?

לדעתי לא.

האם יש מקום לעשות משהו בנידון ברמה של מערכת החינוך?

לא יודע. גדול עלי.

***

כפי שהבטחתי, אסיים את הרשימה במקום שבו התחלתי – אתם יודעים איפה.

ציטוט נוסף מהכתבה ששעשע אותי: "…רק את תמצית הוניל של החילונים עושים מהרקטום של האופוסום, סליחה, הבונה. לנו, הדוסים, נותנים וניל אמיתי, בגלל ענייני הכשרות…". ועל זה כל מה שנותר לי לאמר זה: חחח…נו באמת…

מי הזיז את הזימים שלי? – "הדג שבתוכנו", יומן קריאה

אז מה אני מחפש בספר מדע פופולרי?

1. ידע מדעי שאני לא מכיר.

אבל לא מדע שנעשה אתמול, משהו שכבר עבר ביסוס משמעותי.

2. רקע מקיף על המדע שעליו מתבסס הספר.

הרי אינני איש מקצוע בתחום. למעשה, לטעמי "חדשות מדע" הן רק תירוץ ללמוד על "ישנות מדע".

3. ידע מדעי 'אמיתי' שיישאר איתי לאורך זמן.

אבל שישאר בגדר המדע הפופולרי. מי שרוצה להיות חוקר בתחום, שילך לאוניברסיטה או שיקרא ספר לימוד.

דוגמה 1:  חלק גדול מספרי המדע הפופולרי על 'שיגועי הקוונטים' שנתקלתי בהם לא הכילו ידע אמיתי, מכיוון שמדובר בתורה מתמטית מאוד. מכיוון שכך, הרבה מהספרים עוסקים בפרשנויות לתחום ולא בדבר עצמו. מי שקרא ספרים כאלה, לדעתי, לא נשאר עם תובנה אמיתית על המדע הזה, כיצד הוא בנוי ואיך עושים בו שימוש.

דוגמה 2: "המשפט האחרון של פרמה" מאת סימון סינג הוא ספר מעניין, קולח בקריאה וכזה שגם הצליח ומכר הרבה עותקים. אך אני שואל את עצמי ואתכם, האם יש מישהו שלמד ממנו משהו על מתמטיקה שהוא לא ידע קודם? על מתמטיקה ממש, לא על היסטוריה של המתמטיקה. לדעתי לא, ולכן להבנתי זהו ספר שאינו באמת עוסק במתמטיקה, אלא מספר סיפור מעניין שיש בו מתמטיקה. במובן הזה, הספרים "תורת ההצפנה" ו-"המפץ הגדול", של אותו כותב, טובים יותר (במובן מסוים) מכיוון שהם מכילים את שני האלמנטים: רעיונות מדעיים שמוסברים בצורה סבירה, סיפורים מעניינים על אנשים ועל היסטוריה של המדע.

4. כתיבה בהירה, שתתאים למשלבים שונים של ידע מוקדם.

גם על חשבון השטחה או חוסר דיוק קל. אין מדובר בספר לימוד.

5. מיקוד.

מה נושא הספר? האם הכותב מבין מה הנושא? האם הוא ממוקד בו. האם הוא יודע להפריד בין עיקר לתפל? כלל אצבע לא מחייב: אם לא הצלחת להעביר רעיון ב-300 עמודים, לדעתי, לא תצליח גם ב-600 ואפילו לא ב-900.

6. נראטיב.

נראטיב זה נחמד. אני איש של נראטיבים. מהו הסיפור או הרעיון ששוזר את הפרקים יחדיו לספר אחד? מדוע פרק 2 מופיע לפני פרק 3, אך לא לפני פרק 1? ספר מדע פופולרי טוב, לדעתי, אינו רצף של רשימות בלוג מעניינות.

***

הספר "הדג שבתוכנו" מאת ניל שובין עומד בכל הקריטריונים שמניתי ולכן לטעמי הוא אחד מספרי המדע הפופולרי הטובים שקראתי.

עטיפת העותק שלי של הספר

הכותב הוא מומחה בתחום, שהיה מעורב בגילוי וחקר אחד המאובנים המעניינים של דגים קדומים. הוא משלב סיפורים אישיים ומעניינים מהמחקר שלו בשטח ובמעבדה.

כל פרק מכיל מספיק רקע שעוזר להבין רעיון ומכיל סקירה של המדע הרלוונטי שנעשה בעבר.

הספר עוסק בהיבטים שונים של ביולוגיה התפתחותית (תת-תחום חשוב במסגרת מדע הביולוגיה) תוך שימוש בהקשרים מצטלבים לתחומים רבים של מדע (גיאולוגיה, פלאונטולוגיה, פיזיולוגיה, ביולוגיה מולקולרית, גנטיקה). הספר משתמש בידע הזה כדי לשזור את הנראטיב שלו שמסביר את כותרתו – "הדג שבתוכנו". הוא מראה איך כל היצורים החיים על פני כדור הארץ הם יצירים של תהליך אבולוציה ולכן יש בנו, בני האדם, "שאריות" של תבניות מוקדמות יותר. הוא גם מראה על ידי כך מדוע לאבולוציה יש כוח מדעי והסברתי רב כל כך, כתיאוריה חובקת כל.

אבל גם אם הנראטיב לא חשוב לכם עד כדי כך, הידע על ביולוגיה התפתחותית, על התפתחות עובר ועל איך אנחנו מסיקים דברים שווה את קריאת הספר.

ואם אתם תוהים כרגע היכן נמצאים הזימים שלכם, אני ממליץ לקרוא את הספר.

הספר כתוב (ומתורגם) בצורה ברורה מספיק ולתחושתי יישאר לי ממנו ידע אמיתי בתחומים שנסקרו, גם אם הידע הוא ברמה פופולרית ולא מחקרית. אני אסייג ואומר שיש לי רקע מחקרי בתחום (ביולוגיה התפתחותית) גם אם לא חינוך פורמלי, ולכן יכול להיות שדעתי על רמת הבהירות של הספר מוטלת בספק.

כל הערות השוליים ומראי המקום בספר מרוכזים בסופו, למי שמעוניין. הבחירה הזאת תורמת תרומה מכרעת לקריאה קולחת. מי שבכל זאת מעוניין להעמיק ימצא בסוף הספר הערות, קישורים, מראי מקום ומפתח. ישנן מספר הערות שוליים של המתרגמת. אפשר להתווכח על תרומתן ונחיצותן, אבל הן לא עוברות את גבול הטעם הטוב.

הביקורת היחידה שלי על הספר היא שלמרות שיש איורים רבים וכולם נמצאים במקום הנכון ולמטרה הנכונה, ונראה שהושקע בהם מאמץ, פעמים רבות אני לא הצלחתי להפיק מהם את מה שרציתי. אני לא בטוח למה. רבים מהם לא היו ברורים לי בהקשר של מה שהם ניסו להבהיר.

בזכות ובגנות האבסטרקציה (הפשטה) וקצת על הספר "חשבון להורים"

אתחיל הפעם בשאלה: האם 2×3 ו-3×2 הם אותו הדבר?

כל ילד בבית הספר היסודי יודע שכן, שהרי תוצאת הכפל של שני התרגילים היא 6.

האם אפשר להוכיח זאת?

הנה דרך אחת:

הוכחת ויזואלית לחוק החילוף בכפל בדוגמה פרטית

אבל התשובה הזאת היא מעט מטעה.

ננסה להמחיש את שני התרגילים בסיפור קצר.

1. בדירה של משפחת כהן יש שלושה חדרי ילדים. בכל חדר ישנים שני ילדים. כמה ילדים יש במשפחת כהן?

2. בדירה של משפחת לוי יש שני חדרי ילדים. בכל חדר ישנים שלושה ילדים. כמה ילדים יש במשפחת לוי?

התשובה לשתי השאלות היא 6 ילדים אבל שימו לב שמשפחת כהן ככל הנראה במצב כלכלי טוב יותר ממשפחת לוי מכיוון שיש לה יותר חדרי ילדים בדירה ולכל ילד יש יותר מרחב פרטי משלו. כלומר התרגילים בחשבון זהים אבל הסיפורים לא.

כל מי שלמד מתמטיקה כבר חי את ההפשטה שמייצגת את שני הסיפורים. מה שאנחנו עושים במתמטיקה, פיזיקה והנדסה הוא לתרגם סיטואציות אמיתיות לתרגילים מופשטים של מספרים ואלגברה. שישה תפוחים ושש סוכריות הם ודאי אינם אותו הדבר אך שניהם מיוצגים על ידי המספר המונה 6 כי כרגע, למשל, אנחנו עוסקים רק במניית כמות האברים. חוקי החילוף, הקיבוץ והפילוג נראים לנו כמו משהו ברור מאליו. כזה שאינו זקוק להסבר, הוכחה או המחשה. זאת אחת הסיבות שללמד ילדים צעירים חשבון הוא אתגר לא פשוט. קודם כל אנחנו צריכים להבין היטב את הבסיס הרעיוני בעצמנו, אחר כך להבין מה לא יהיה מובן לילדים ורק אז לנסות לתווך את זה עבורם בצורה מדורגת. אם הייתי מנסה לעשות זאת ללא הכנה מוקדמת הייתי נכשל (כנראה גם עם הכנה). הוראה היא מקצוע וצריך להשקיע בו כדי לעשות אותו טוב.

ההפשטה המתמטית היא כלי חזק מאוד למדעים מדויקים. אבל לפעמים אנחנו עלולים להיאבד בשבילי האלגברה המופשטים.

במהלך לימודי באוניברסיטה לקחתי שני קורסים שכותרתם היתה "מבוא ללייזרים". בקורס אחד למדתי כמות עצומה של נוסחאות מתמטיות ואיך משתמשים בהן כדי לפתור תרגילים שונים ומשונים. הצלחתי לא רע. מה שלא הבנתי זה איך כל הנוסחאות האלה קשורות לציין הלייזר שבו השתמש המרצה. בקורס השני (פקולטה אחרת, שנה אחרת) למדנו מהו לייזר, מה ההיסטוריה שלו, מהו הרעיון הכללי שעומד מאחוריו, מהם הסוגים השונים ומהם השימושים האפשריים. הרוב במילים, כמעט ללא מתמטיקה. היתרון: סוף סוף הבנתי על מה בעצם מדובר ואיך כל זה קשור לציין הלייזר שבו השתמש המרצה. החיסרון: סטודנט שלקח רק את הקורס הזה יתקשה לשכנע בראיון עבודה שיש לו את הכלים והידע המקצועי הדרוש בתחום.

מנקודת הראות שלי היום – המרצה הראשון חי את ההפשטה באופן מלא ואיבד את הקשר למציאות והמרצה השני היה כל כך שקוע בסיפור שלא שם לב לקו הדק שבין מדע למדע פופולרי.

***

חשבתי על כל הדברים האלה בזמן שקראתי את הספר "חשבון להורים" של רון אהרוני. לפי הכריכה המחבר הוא פרופסור למתמטיקה בטכניון שהתנסה בלימוד חשבון בבתי ספר יסודיים.

עטיפת עותק הספר שלי

באחד הפרקים מדריך המחבר את קוראיו כיצד למסור את ההפשטה לילדים בבית הספר היסודי. הנה מספר עקרונות שדליתי מתוך הפרק:

– להתחיל מדברים מוחשיים ומוכרים, מסיפורים.

– להשתמש בדוגמאות מגוונות ולא להתקבע על משהו אחד.

– לגרום לרעיונות לבוא גם מהתלמיד.

– לשאול גם שאלות קלות ולא לפחד להגיד גם את המובן מאליו.

– לשים לב שבאופן טבעי קל לנו יותר לדבר (להרצות) מאשר להקשיב לכן חשוב לשלב דיונים ככל האפשר.

– חשוב לתת שמות ברורים ומובחנים לכל דבר. תלמידים מתחברים לזה.

– יש לתת הוראות ברורות למשימות.

כאשר קראתי את הספר לא יכולתי שלא לשים לב שכל העקרונות האלה רלוונטיים גם בהוראה בתיכון של עקרונות מורכבים יותר וסביר להניח שגם באוניברסיטה.

נהניתי לקרוא גם את המשך הספר שמסביר בקצרה עקרונות בסיסיים בלימוד פעולות החשבון בבית הספר היסודי. היה מעניין להתעמק במשמעות האמיתית של כל דבר ולא לדלג הלאה כמו שאנחנו עושים בד"כ כי אנחנו כבר יודעים לחשב את התוצאה.

דבר דומה קרה לי כשלמדתי ללמד פיזיקה תיכונית. מצאתי את עצמי מתעמק בעקרונות פשוטים ביחס לאלה של האוניברסיטה והמחקר, אבל הפעם להבין אותם לעומק. הדבר הוביל אותי להבנה טובה הרבה יותר של הרעיונות שהשתמשתי בהם במשך שנים וגם לתובנות חדשות ומפתיעות על דברים שלכאורה ידעתי או הייתי אמור לדעת.

במהלך הקריאה גם עשיתי לעצמי מנהג לחשב בראש את התרגילים שהמחבר דן בהם ואז לקרוא כיצד הוא מנחה ללמד אותם וכיצד הוא חוזה שרוב האנשים באמת יחשבו אותם. הייתי יותר צפוי ממה שרציתי להאמין.

לסיכום, קריאה מהנה ומעניינת, לדעתי, לכל מי שמתעניין בחינוך מדעי (לכל הגילאים). אני מודע לכך שיש יותר עומק מאחורי הסיבה שבגינה נכתב הספר במקור, אבל זה פחות מעניין אותי באופן אישי.

איך לא לירות חץ ללב השמש

דמיינו אדם קדמוני, חמוש בחץ וקשת, שכועס על השמש הקופחת על פדחתו ומנסה לירות בה. מגוחך, נכון? אבל למה בעצם?

דמיינו אדם קדמוני אחר, חמוש בצורה דומה, שכועס דווקא על כדור הארץ. החיים שלו הרבה יותר קלים. לא משנה לאן יכוון את הירי, באיזה עוצמה יירה ובאיזה כיוון, תמיד יפגע (בהנחה שחץ לא ננעץ בעץ או משהו אחר). הכבידה תמיד מנצחת.

אם כך, כל מה שנדרש כדי לפגוע בשמש זה לירות חץ במהירות מספיק גבוהה כך שיברח משדה הכבידה של כדה"א, ואז הפגיעה מובטחת, לא? הרי השמש היא ודאי הגורם הכבידתי המשמעותי ביותר באזור.

הבעיה היא שכבידה לא בדיוק עובדת ככה.

אנסה להסביר ללא שימוש במתמטיקה.

***

נפתח בשאלה:

מדוע אסטרונאוטים מרחפים בתחנת החלל?

אסטרונאוטים מרחפים בתחנת החלל (2008). המקור לתמונה: ויקיפדיה, והמקור האמיתי לתמונה: Nasa.

התשובה הנפוצה: כי כוח הכבידה חלש מאוד שם למעלה.

תנו לי לשכנע אתכם שזה לא נכון. קחו חפץ כלשהו וקישרו אותו לחבל. כעת עשו מה שתעשו לחבל כך שהגוף ינוע במעגל אופקי בקצב קבוע. מי גורם לגוף הקשור לנוע בתנועה מעגלית? אתם? הרי אתם לא נוגעים בו. זה החבל. קל לבדוק זאת. אם החבל יקרע החפץ יעוף ויפסיק את התנועה המעגלית גם אם תמשיכו לנענע את היד.

בצורה דומה חישבו על תחנת החלל והאסטרונאוטים בתוכה. מה שגורם להם לנוע בתנועה מעגלית הוא כוח הכבידה שמחליף את החבל בדוגמה הקודמת. אם לא היה כוח כבידה התחנה היתה עפה לחלל ולא היינו שומעים ממנה שוב. למעשה תחנת החלל קרובה מאוד לפני כדה"א וערכו של כוח הכבידה שם הוא כ-90 אחוז מערכו על הקרקע.

אז למה האסטרונאוטים מרחפים?

חישבו על הרגע שבו אתם נמצאים במעלית ובדיוק לחצתם על הכפתור לעלות למעלה. לרגע קט בו המעלית מתחילה לנוע מעלה (המעלית בתאוצה) אנחנו מרגישים קצת מעוכים בבטן ובברכיים. תחושה זאת אינה רק בראש שלנו. קחו משקל למעלית, עלו עליו ולחצו על כפתור המעלית לעלות למעלה. בזמן ההאצה המחוג יזוז וחיווי המשקל שלכם יעלה. ברגע שהמעלית סיימה להאיץ ונעה במהירות קבועה, המחוג יחזור למשקל הרגיל.

ומה יקרה אם המעלית תאיץ כלפי מטה? בדיוק הפוך, וגם את זה אנחנו מרגישים יום-יום במעלית. לרגע קט, בזמן ההאצה, המשקל שלנו יורד. ומה יקרה אם המעלית מאיצה יותר מהר? אז המשקל שלנו ירד אף יותר.

ומה יקרה אם המעלית נעה מטה בתאוצת הנפילה החופשית על פני כדה"א? אז זה אומר שכנראה הכבל שמחזיק את המעלית נקרע (תרחיש מאוד לא סביר) ואתם, המעלית ומד-המשקל נופלים באותה תאוצה כלפי מטה. במצב זה, כשכולם נופלים, לא ניתן להפעיל "קונטרה" על המשקל וקריאתו אפס. זהו מצב של חוסר משקל. ביחס למעלית אנחנו מרחפים.

לא מאמינים? חפשו סרטונים על מטוס שעושה בדיוק את זה ונקרא בשם החיבה הלא נעים: "Vomit comet".

אם כך, האסטרונאוטים בתחנת החלל מרחפים ביחס לתחנה כי הם והתחנה נופלים יחדיו אל כדור הארץ באותה תאוצה. לכן השאלה הנכונה היא לא מדוע האסטרונאוטים מרחפים, אלא מדוע הם לא מגיעים לקרקע.

מדוע האסטרונאוטים בתחנת החלל לא מגיעים לקרקע?

התשובה לכך היא שמלבד לנפילה הם גם נעים במהירות שכיוונה משיק למסלול התנועה המעגלית של התחנה סביב כדה"א. גודל המהירות הוא כזה שהוא מפצה באופן מושלם על הנפילה. הנפילה לכדה"א מקרבת את התחנה לקרקע והתנועה בכיוון משיקי מרחיקה אותה מהקרקע בדיוק באותה מידה. כלומר, באופן תיאורטי, כדי להעלות לוויין לתנועה מעגלית סביב כדה"א יש להעלות אותו לגובה הרצוי ואז לתת לו מהירות בדיוק גודל הנכון בכיוון משיק למסלול הרצוי. (השיקולים הפרקטיים האמיתיים להעלות לוויין הם הרבה יותר מורכבים, כמובן, אך אינם חשובים למה שאני רוצה להסביר. מה גם שאינני מומחה בלוויינים).

ומה קורה אם הלוויין לא נע במהירות הנכונה? כל עוד הוא לכוד בשדה הכבידה של כדה"א הוא ינוע במסלול אליפטי סביבו. שימו לב לנקודה החשובה הזאת: כל הלוויינים של כדה"א, כולל הירח, לכודים בשדה הכבידה שלו. ראו באיור הבא המחשה לאותו הרעיון על ידי ירי פגז תותח במשיק לכדה"א בקצהו של הר. הרעיון לקוח מאייזיק ניוטון בכבודו ובעצמו.

התותח של ניוטון. במסלולים A ו-B מהירות השיגור נמוכה והפגז נוחת על הקרקע. במסלול C המהירות בדיוק מתאימה לתנועה מעגלית בגובה פני כדה"א. במסלול D המהירות גבוהה יותר ולכן תנועה אליפטית סביב כדה"א, אז הפגז עדיין לכוד בשדה הכבידה. במסלול E לא ניתן לדעת לפי האיור. המקור לאיור: ויקיפדיה, לשם הועלה על ידי המשתמש Brian Brondel.

מה יקרה אם לוויין שנע במסלול מעגלי או אליפטי סביב כדור-הארץ יפעיל מנוע כלשהו ויעצור במקום, כלומר יאפס את מהירותו המשיקית? אז הוא כמובן ייפול לכדה"א. הרי המהירות היא מה שמנעה ממנו להגיע לשם מלכתחילה.

מדוע קשה ליפול אל השמש?

כעת בואו ונזכר שכדה"א, אנחנו והחצים שלנו, כולם לכודים בשדה הכבידה של השמש. מדוע אנחנו לא נופלים לתוכה? כי אנחנו נעים במסלול אליפטי יציב סביבה, כפי שהסביר לנו קפלר. אם כך, גם אם החץ שירינו ברח משדה הכבידה של כדה"א הוא עדיין לכוד בשדה הכבידה של השמש ונע סביבה בערך במהירות של כ-30 קילומטר לשניה.

נראה שהגענו לפתרון. כל מה שנדרש הוא להפעיל מנועים כדי לעצור את מהירותו המשיקה של החץ סביב השמש לאחר הבריחה משדה הכבידה של כדה"א. במקרה כזה הוא אכן, ככל הנראה, ייפול לתוך השמש, מה שיחשב כפגיעה לכל הדעות. אבל,

הבעיה היא שאנחנו עדיין לא שם מבחינה טכנולוגית. המהירות שיש לבטל היא גדולה מאוד. הטיל שיידרש כדי לשגר מעלה את עצמו (כולל החץ) ובתוכו את כמות הדלק הנדרשת גם כדי להעלות מעלה את עצמו וגם כדי לעצור את המהירות המשיקית שלו הוא הרבה יותר מורכב ממשהו שאי פעם בנינו. זכרו שכדי להעלות יותר משקל נדרש יותר דלק שמעלה את המשקל ומצריך יותר דלק וכך הלאה. ויש גם את החץ.

אז האם הכל אבוד?

לא, ההפך הוא הנכון. יש דרכים אחרות, יותר מורכבות להבנה, כדי לשלוח חלליות לכיוון השמש, אם אנחנו מוכנים לוותר על פגיעה ישירה. ניתן להשתמש במנגנון שנקרא Gravity assist שמשתמש בכוח הכבידה של כוכבי לכת אחרים סביב השמש כדי להשפיע על המסלול של הגוף המשוגר (כתבתי על כך ברשימה קודמת), כך שעם הזמן המסלול האליפטי של הגוף ילך ויתקרב לשמש. בשנת 2018 שוגר ה-Parker Solar Probe כדי לחקור את הקורונה של השמש ובשנת 2025 הוא צפוי להגיע במסלול האליפטי שלו סביב השמש למרחק של כ-7 מיליון קילומטר ממנה (ראו הנפשה). נכון, לא פגיעה ישירה, אבל קרוב לאללה, או לפחות הכי קרוב שנגיע בזמן הקרוב. ובכל מקרה, מי רוצה לנחות על השמש? חם שם…

:קטגוריותכללי תגיות: , ,

סיפורים, סיפורים, שק של נחשים (מגומי) – 'היסטוריה של המדע לצעירים מכל הגילאים' – יומן קריאה

לפני מספר שנים סיפר לי קולגה סיפור שכבר איני זוכר מה היה תוכנו. הדבר היחיד שאני בכל זאת זוכר ממנו הוא שבמהלכו שורבבה בו עובדה שלא היתה חשובה לעצם העלילה. "לחסה יש ערך קלורי שלילי מכיוון שהערך הקלורי של מרכיביה כל כך נמוך, כך שתהליך העיכול שלה צורך יותר אנרגיה ממה שניתן להפיק מאכילתה". עובדה משונה שאף פעם לא שמעתי עד אז. דגלים אדומים הורמו ואזעקות נשמעו בראשי. אבל אני רחוק מלהיות מומחה בתזונה, וזה לא היה ממש חשוב לסיפור אז שתקתי.

שלושה ימים אח"כ, כאשר ישבתי במקרה אל מול המחשב, נזכרתי בעובדה על החסה. לאחר עשר דקות של חיפוש וקריאה ברשת השתכנעתי שזאת אגדה אורבנית. מיד שלחתי מייל עדכון לקולגה, שלא זכר על מה מדובר ומצא בו עניין מועט מאוד. התבדחתי על חשבונו והתקדמנו הלאה בחיינו.

***

לפני מספר שנים סיפרתי לקולגה סיפור שכבר איני זוכר מה היה תוכנו. הדבר היחיד שאני בכל זאת זוכר ממנו הוא שבמהלכו הסברתי לה שמקור הביטוי "הפנקס פתוח והיד רושמת" הוא במערכון ישן של שייקה אופיר שבו הוא מנהל בית-ספר. עובדה משונה שהיא לא שמעה עד אז. כיוון שעובדה זאת בפרט וכל הסיפור שלי בכלל עניינו אותה כשלג דאשתקד, היא שתקה.

שלושה ימים אח"כ, כאשר ישבתי במקרה אל מול המחשב, נזכרתי בסיפור שלי וחיפשתי את המערכון באינטרנט. לאחר עשר דקות של חיפוש התחלתי להבין שלא רק שהמערכון לא קיים, אלא שהעובדה שסיפרתי היא הדבקה של שלושה זיכרונות ילדות עמומים שאין בינם ובין המִכְתָּם שציטטתי דבר וחצי דבר. מיד שלחתי מייל עדכון לקולגה, שלא זכרה על מה מדובר ומצאה בו עניין מועט מאוד. היא התבדחה על חשבוני והתקדמנו הלאה בחיינו.

***

מוסר ההשכל של הסיפורים, לטעמי: 1) אני קטנוני בעניין של עובדות, ובמיוחד מדעיות. 2) הנושא חשוב לי. 3) כדאי תמיד להיות ספקן לגבי עובדות שאתם לא זוכרים כיצד הגיעו לידיעתכם. לכולנו יש מגבלה מוחית שגורמת לנו, בניגוד להיגיון, להגן דווקא על עובדות כאלה כידע כללי מוכר (בעגה, "common knowledge").

לא אלאה אתכם בדיון מדוע במקרים מסוימים האמת באמת אינה חשובה, אבל ברוב המקרים היא כן. אוותר גם על הדיון ברמת האובססיביות והטרחנות הרצויות כך שישאירו "טעם טוב". אתם יודעים את כל אלה, או יכולים להסיק לבד.

***

בעמוד 344 של הספר "היסטוריה של המדע לצעירים מכל הגילאים" מאת ויליאם ביינום כתוב: "טרנזיסטור הוא רכיב אלקטרוני שמשמש למיתוג והגברה של אותות חשמליים. הוא פותח משנת 1947 ואילך על ידי ויליאם שוקלי (1910~1989), וולטר ברטן (1902~1987) וג'ון ברדין (1908~1991)…שלושת הממציאים זכו יחד בפרס נובל בפיזיקה. ברדין קיבל אחר-כך פרס נובל שני על מחקר בנושא מוליכים-למחצה – קבוצת חומרים שמשמשים מרכיב הכרחי בטרנזיסטורים ובמעגלים חשמליים מודרניים."

אהה, לא.

המשפט האחרון מתאר את נושא פרס הנובל הראשון שקיבל ברדין. הנושא השני שעליו קיבל פרס נובל הוא פיתוח מודל מתמטי-פיזיקלי לתופעת מוליכות העל בטמפרטורות נמוכות שנקרא בקיצור (על שם מנסחיו) BCS, כאשר ה-B הוא ברדין.

וזה לא מקרה בודד. יש בספר מספר גבוה מידי לדעתי של שגיאות קטנות כאלה, לפעמים על הגבול בין נכון ללא נכון ולפעמים פשוט לא נכון. לי זה הזכיר הגדרות לא טובות בתשחצים שאתם יודעים מה כוונת המחבר ומה התשובה שאליה הוא מכוון, אבל הקשר בין ההגדרה לתשובה רופף. האם יש לסלוח בגלל הצורך לקצר עקב הפורמט הקשוח?

***

העותק שלי של הספר

הגעתי אל הספר בעקבות קריאה מהנה של ספר אחר בסדרה בנושא פילוסופיה. אינני יודע דבר על הכותב, ולא מופיע כל מידע עליו בתוך הספר.

כשמו כן הוא, הספר עוסק בהיסטוריה של המדע מימי קדם ועד לימינו אנו בקיצור נמרץ. הספר לכאורה מכוון לבני נוער, אבל בעצם לכולם. זה מן משחק מעניין בסדרת הספרים הזאת שאני לגמרי בעדו. אין לדעתי הבדל גדול בצרכים בין בני נוער שוחרי ידע למבוגרים שרוצים להחכים מעט בנושא שאינו תחום המומחיות שלהם.

הספר מחולק ל-40 פרקים בנושאים מדעיים שונים, שמסודרים בערך בסדר כרונולוגי. הוא עוסק בכל הנושאים המדעיים הקלאסיים כגון כימיה, פיזיקה, ביולוגיה, גיאולוגיה וכדומה. אני לא הצלחתי לזהות כל סידור או חלוקה בין הפרקים מלבד הסדר הכרונולוגי. לא הצלחתי גם לזהות נרטיב כלשהו שיהפוך את הקריאה לבעלת משמעות. כל פרק הוא רצף של "ניים-דרופינג" בתחום מסוים ועובדות רבות וקצרות על הנושא והאנשים החשובים שעסקו בו. לפעמים מוסיפים איזו תכונה משונה כדי לתבל. הסגנון הוא למשל: "משה ישראלי (1943~2019), היה קמצן והיה לו אף ארוך. הוא עבד על… וגילה את…". אני כמובן מקצין, אבל זה לא רחוק מזה. אין מקום לפירוט והרחבה ואין אורך נשימה לאף נושא בגלל הפורמט. יש מעט מאוד "סיפוריות" בספר.

דבר נוסף שהטריד אותי בקריאה בספר הוא שעצם המדע והרעיונות שמוזכרים בו אינם מוסברים בצורה מובנת, לדעתי. הצורך לקצר השחית כל פינה טובה. אמנם נושא הספר הוא "היסטוריה" ולא "מדע", אבל לא סתם "היסטוריה" אלא "היסטוריה של המדע" ולכן לטעמי היה צריך להקפיד יותר בהסברים.

ישנן בספר תוספות או הערות שבבירור הוספו על ידי המתרגם לעברית, אולי כדי להתאים את התוכן לקהל ישראלי. כך לפחות אני משוכנע. הן בולטות לעין אך אינן מסומנות ככאלה וחבל. לטעמי רובן פרובנציאליות ומיותרות. לראיה, יומיים אחרי סיום הקריאה אני כבר לא מסוגל לצטט מזיכרון אף אחת מהן.

***

לסיכום, מדובר לטעמי בשורה של כתבות עיתונאיות או סיכומים בנושאים שונים שהתאגדו לכדי ספר שלם, עם כשל רציני בנושא fact-checking. תפסת מרובה, לא תפסת.

הקריאה קלה ואינה מכבידה או מאתגרת, לטוב ולרע.

האם למדתי מהספר דברים מעניינים שלא ידעתי? כן, לא מעט.

שוב ושוב ושוב ושוב, על הקשר בין בדיחות עבשות ניבולי פה וגבישים

דיסקליימר ואזהרה:

הרשימה הזאת נפתחת בשימוש קטן בגסויות. ביטוי ילדותי שכולל את השורש ז.י.נ, במשמעותו הגסה, וגרוע מזה, בשיתוף בעל חיים. אם דבר זה עלול להטריד אתכם, דלגו (על הפסקה, הרשימה, על מה שבא לכם. הכל טוב😀)

***

אני מניח שלא מעט אנשים שגדלו בישראל נתבקשו בשלב כלשהו בילדותם על ידי מאן דהוא להגיד בקול "יַנְתִי-פַּרַזִי" מספר פעמים רב ברצף. אם לא, זה הזמן.

אוקיי, מצחיק. כי זה כאילו גס. אבל גם כי התרחש פלא. ביטוי ג'יבריש הפך פתאום למשהו אחר, בעל משמעות. גסה.

נסו את אותו הדבר עם המילה "תִּירָס".

הפעם פחות מצחיק, כי זה לא גס, אבל יש שוני חשוב נוסף. שתי הצורות עובדות, גם "תִּירָס" וגם "סְתִירָה\סְטִירָה", ואנחנו יכולים לעבור ביניהן בקלות. כלומר, לשמוע את הראשונה או את השניה.

מדוע (למיטב הבנתי) זה עובד, ואיך זה קשור למדע (בעיקר בראש שלי)? על כך בהמשך.

***

אתחיל בלהפשיט את שתי המילים רק לחלקים אותם אנו הוגים:

תִּירָס – סְתִירָ

נבחין שההגייה והצלילים של שתי הצורות זהים עד כדי פרמוטציה ציקלית. כלומר, אם נסדר את האותיות על גבי מעגל, כאשר האות הראשונה בתחתיתו וקוראים בכיוון השעון, נוכל לעבור מצורה לצורה על ידי סיבוב פשוט של המעגל. ראו המחשה באיור הבא:

אגב, זה אומר שגם "רָסְתִי" יעבוד בצורה דומה, אם כי למופע זה אין משמעות בעברית.

אם כך, שתי המילים " תִּירָס – סְתִירָ" הן פרמוטציה ציקלית אחת של השניה. אבל, כאשר הוגים אותן קל מאוד להבדיל ביניהן. הן לא נשמעות אותו דבר כלל.

כאן מגיע הקסם של החזרה המרובה על המילה.

באיור הבא רשמתי ברצף מספר רב של פעמים את אחת מהמילים אבל טשטשתי את הקצוות. האם תוכלו לזהות האם רשמתי "תירס" או סתיר"? (ללא ניקוד הפעם):

ועכשיו לתמונה המלאה:

ניכר שלולא הקצוות לא ניתן להבדיל בין שני המקרים.

כעת דמיינו שאני רושם את המילה או הוגה אותה כל כך הרבה פעמים שלקצה כבר אין משמעות. הוא אירוע זניח ומרוחק מאיתנו, ושכחנו אותו. במקרה זה קל להבין מדוע המוח יכול להחליף בקלות בין שני המופעים. כמו כן, אם אחד מהם הוא מילה שלא קיימת בשפה, אז המוח יתקבע על המקרה שהוא מכיר ויש לו משמעות.

כעת בואו ונחשוב על המקרה ההפוך.

אנו ניצבים אל מול שרשרת אינסופית של האותיות הנ"ל. אין לה התחלה ואין לה סוף, והיא היתה מאז ומתמיד. אם כך, לדיון האם זה "תירס" או "סתיר" אין במצב זה כל משמעות. אך מה יקרה אם נשבור פיזית את השרשרת ונאלץ הופעה של קצה?

סביר להניח שאם חתכנו כך שהאות הראשונה היא 'ת', אז לפתע נקרא את הטקסט כחזרה על המילה "תירס". אם, לעומת זאת, נחתוך כשהאות הראשונה היא 'ס', נקרא את השורה כחזרות על המילה "סתיר".

***

אבל איך כל זה קשור למדע?

מבנים כאלה קיימים גם בעולם החומר והם נקראים גבישים.

בואו ונראה עד כמה רחוק נוכל לקחת את האנלוגיה הזאת.

***

מבלי להתעקש על הגדרות מדויקות ותקינות, אוכל לכתוב שמבנה גבישי הוא צורה גיאומטרית שנוצרת מחזרות במרחב של אותו אלמנט בסיס. אלמנט הבסיס מורכב מנקודות במרחקים מוגדרים אחת מהשניה.

נשרטט לנו מבנה שכזה, נניח אטומים בכל נקודה, והרי לנו גביש. חומרים רבים מופיעים בטבע בצורת גבישים, למשל מתכות ומוליכים למחצה. חומרים אלה חשובים לנו בהרבה תחומים, לדוגמה בתעשיית השבבים ובמדע החומרים.

[הערת שוליים – "הרי לנו גביש" *אחיד*, אבל אני לא נכנס לתיאור מורכב ברשימה זאת]

נבחן מקרה להמחשה (בשני ממדים לשם פשטות).

הנה ארבע נקודות על קודקודים של ריבוע:

הנה שכפול של המבנה (דמיינו שכפול אינסופי):

מבנה זה נקרא בעגה 'סריג'.

אם נציב אטומים בנקודות הסריג ונרחיב לשלושה ממדים נקבל גביש במבנה 'קובי פשוט'.

בואו ונבחן דוגמה מעט יותר מורכבת.

הנה סריג אחר:

מהו תא היחידה? כלומר, מהו האלמנט שצריך לשכפל כדי לקבל את המבנה המלא?

הנה שלוש אפשריות שונות:

אתן בהן שמות (ללא הסבר): אפשרות א' – 'מלבני', אפשרות ב' – 'פרימיטיבי', אפשרות ג' – 'ויגנר-זייץ'.

ברור שיש אינסוף אפשרויות לייצר תא יחידה. למשל, פעמיים התא המלבני, או שלוש פעמים וכך הלאה.

נשים לב שתא היחידה המלבני אינו מינימלי, שהרי ניתן לספור בו שני אטומים (אחד שלם באמצע ועוד ארבעה רבעים בקודקודים). אתם גם מוזמנים לבדוק שהשטח שלו כפול מזה של השניים האחרים ששווים בשטח שלהם אחד לשני ומכילים רק אטום אחד.

אז בואו ונהיה יותר הדוקים. נגדיר תא יחידה 'פרימיטיבי' ככזה בעל שטח (בעצם נפח) מינימלי, ובו תהיה רק נקודת סריג אחת.

אך בדוגמה האחרונה ראינו שניים כאלה ('פרימיטיבי', 'ויגנר-זייץ').

האמת היא שכל התאים נכונים ונבחר באיזה סוג תא להשתמש מטעמי נוחות. למשל, התא המלבני נוח להבנה ולניתוח וקל לראות ממנו את הסימטריה של הגביש ולעשות בו חשבונות פשוטים, למרות שאינו פרימיטיבי. לעומת זאת, לפיזיקה מתמטית מתקדמת נעשה שימוש בתא ויגנר-זייץ (מסיבות שקשה לי להסביר במסגרת הזאת).

[הערת שוליים (לדוברי השפה) – את הוקטורים הפרימיטיביים לתיאור הגביש באלגברה נוח למצוא מתא היחידה הפרימיטיבי.
אם נבצע התמרת פורייה מרחבית על תא ויגנר-זייץ נקבל את אזורי ברילואן של המבנה. לפי איזורי ברילואן נוכל לקבוע ולחשב תכונות אנרגטיות מורכבות של הגביש ואת צורת הפיזור ממנו, למשל של קרני X]

שימו לב שאם נניח שהגביש בגודל סופי, בחירות שונות של תאי יחידה יקבעו איך תראה השפה של הגביש. עם זאת, בכל גביש שאנו מסוגלים לראות את המימד שלו בעין בלתי מזויינת, השפעות הקצה על הנפח אינן חשובות. פני השטח של גביש מורכבים מכמה שכבות של אטומים. זאת כמות חומר זניחה ביחס לגודל הנפח, ולכן ניתן להתייחס לכל גביש כאין-סופי, ביחס לקצוות. כלומר, התכונות הפיסיות (חוזק וכדומה) והחשמליות (למשל הולכה חשמלית) של הגביש נקבעות ברוב המקרים על ידי הנפח.

האם זה תמיד נכון? האם אין לקצוות שום משמעות?

***

בואו ונביט על ייצוג תלת ממדי של מבנה קובי פשוט. נסו לדמיין שכל המרחב התלת-ממדי מרוצף בחזרות של התא הזה.

מבנה קובי פשוט. המקור לאיור: ויקיפדיה, לשם הועלה על ידי המשתמש Daniel Mayer, DrBob.

כעת אני אחתוך את המבנה (האינסופי) לאורך מישור מוגדר של הגביש בשני צורות שונות. פעם אחת במישור הדופן של הקוביה ופעם שניה במישור האלכסון של הקוביה. ראו באיור הבא את כל מישורי החיתוך האפשריים. סימנתי את השניים שאני דן בהם כאן.

מישורים שונים במבנה קובי. שני המישורים שאני דן בהם מסומנים באדום ובכחול. המקור לאיור: ויקיפדיה, לשם הועלה על ידי המשתמש Cdang.

נביט בייצוג דו-ממדי של המישורים שבהם חתכתי (בעצם היטל) בתא יחידה בודד:

קל לראות, לדעתי, שצפיפות האטומים בשני מישורי החיתוך שונה לגמרי.

מה המשמעות של זה?

אם נניח שבכל נקודה מונח אטום וכל אטום תורם כמות שווה של אלקטרונים להולכה, הרי שהמוליכות החשמלית במישור אחד תהיה גבוהה מזאת במישור השני. ואם, למשל, אנחנו רוצים להדפיס טרנזיסטורים על פני מישור של סיליקון, אנחנו חייבים לקחת עובדה זאת בחשבון.

זאת דוגמה אחת מיני רבות על החשיבות של קצוות הגביש במקרים מסוימים. כלומר, בגביש תכונות הנפח (Bulk) שונות מתכונות פני השטח (Surface), ותכונות פני השטח תלויות באיזה מישור חתכנו.

בנוסף, כיום אנחנו יודעים לייצר שכבות דקות מאוד וגם גבישים קטנים מאוד של חומר. במקרים אלה לא ניתן לדבר על נפח (Bulk) ללא קצוות, ואכן במבנים כאלה נמדדות תופעות מורכבות ויש לכתוב את הפיזיקה בדרך מורכבת וזהירה יותר.

***

בעולמנו ניתן להבחין במבנים מחזוריים ובחזרתיות בכל מיני מקרים וצורות: בשפה, במוזיקה ובחומר. כלומר, גם בעולם הטבע וגם בעולם התרבות. אני מניח שזה קשור לצורך שלנו להכניס סדר בעולם כאוטי. ואני מתכוון לזה במובן גשמי לחלוטין ולא רוחני. יש בנושא זה עושר כל כך גדול של כיוונים להתעמק בהם.

Don't get me started!

זהוזהוזהוזהוזהוזהוזהוזהוזהוזהוזהוזהוזהוזהוזהוזהוזהוזהוזהוזהוזהוזהוזהוזהוזהוזהוזהו

:קטגוריותכללי תגיות: , , ,

לא אופטיקאי מדופלם – על הקשר בין צמצם לעומק שדה

הפעם אפתח בווידוי: מעולם לא קניתי מצלמה.

המצלמה הראשונה שהייתה ברשותי היית חלק מטלפון (לא חכם במיוחד) ולא השתמשתי בה רבות. כיום המצב שונה, כמובן, בגלל הטלפונים החכמים.
מטרת הווידוי היא להסביר, ולא במעט, את העובדה הבאה: עד לפני כחודש לא ידעתי שסגירת הצמצם במצלמה מגדילה את עומק השדה של התמונה. מה רבה הייתה הפתעתי לשמוע זאת, מה גם שאם היו שואלים אותי, וודאי הייתי מנחש הפוך, אם בכלל.

אם כן, המשימה הפעם ברורה: אנסה להסביר מדוע שינוי במפתח הצמצם משפיע על עומק השדה של תמונה, מבלי להשתמש במשוואה מתמטית אחת. אצטרך להסביר מהי אופטיקה גיאומטרית ואופטיקת קרניים, להבין מהי דמות, מהי פעולת עדשה ומהי פעולת צמצם ואולי, ולבסוף כיצד הוא משפיע על עומק השדה.

תידרש סבלנות. נתחיל.

אופטיקה גיאומטרית\קרניים

אתחיל מהנחת היסוד: מסתבר שאור, שהוא תופעה מורכבת מאוד, נע, במקרים רבים, לאורך קווים ישרים. קל מאוד להראות זאת על ידי משחק באור וצל. קחו מקור אור וכוונו אותו על מסך. בין המקור למסך הניחו לוח שחוסם חלק מהאור (ראו איור 1). אם נניח שהאור נע בקווים ישרים נוכל לחשב את גודל הצל על ידי חישוב גיאומטרי פשוט (דמיון משולשים, מכאן "אופטיקה גיאומטרית"). אך גם ללא חישוב מדויק, כל מי שיבצע את הניסוי הזה ישתכנע בעובדה זאת.

איור 1: אופטיקה גיאומטרית. ניתן לחשב את רוחב הצל לפי דמיון משולשים.

אם אור אכן נע בקווים ישרים ברוב המקרים שמעניינים אותנו, נוכל לתאר כל אלומה של אור על ידי אסופה של קווים ישרים. כמה קווים? כמה שנוח לנו. האם אלומת אור באמת מורכבת מקווים ישרים בדידים? לא, אבל אם האור נע לאורך קווים ישרים תהיה זאת דרך יעילה ופשוטה מאוד לתאר תופעות מורכבות מאוד. אם כן, מעכשיו נתאר אלומות של אור על ידי חצים ישרים, או בעגה: "קרניים" (מכאן "אופטיקת קרניים").

הקיר מקולקל

עימדו נא אל מול קיר. מדוע דמותנו אינה משתקפת עליו?

האם אין הקיר מחזיר אור? ודאי שמחזיר, אחרת לא היינו רואים אותו.

האם לא ניתן להקרין עליו תמונות? ודאי שניתן, אם יש ברשותנו מקרן.

אם כן, מה הבעיה בקיר? למה הוא לא עובד כראוי?

כדי לשכנע שהקיר אינו מקולקל, קחו זכוכית מגדלת בחדר סגור (עדיף חשוך אבל לא חובה) עם חלון פתוח. החזיקו את זכוכית המגדלת בין החלון לקיר, קרוב לקיר (מספר סנטימטרים, תלוי בתכונות העדשה). מצאו את המרחק המתאים (מרחק המוקד) ואני מבטיח לכם שתראו תמונה קטנה והפוכה של הנוף הנשקף מהחלון.

אם כן, הקיר אינו 'מקולקל', ובכל זאת, דמותנו אינה משתקפת בו. מדוע?

כדי להסביר זאת ראשית יש להסביר מדוע אנחנו רואים עצם כלשהו שנמצא מולנו (למשל קיר).

אור ממקורות שונים פוגע בכל נקודה בעצם. כל נקודה שבה פוגע אור מפיצה אותו לכל כיוון אפשרי ובכך הופכת למקור אור משני (בדומה לשמש ולירח, השמש מקור אור אמיתי, כלומר, הפולט אור, והירח מקור אור משני, כלומר, מחזיר את אור השמש).

חלק מקרני האור המפוזרות מנקודה על העצם מגיעות אל העין שלנו. העין שלנו היא מכשיר מתוחכם שיודע לאסוף את כל הקרניים שהתפזרו מאותה נקודה והגיעו אליה ולרכז אותן חזרה לנקודה אחת על הרשתית, שהיא לוח חיישני אור מורכב בירכתיי העין (ראו איור 2). כלומר, העין והמוח יודעים לפענח מה הכיוון ממנו הגיע האור מהנקודה (לאו דווקא המרחק, ומכאן נובעות בעיות פרספקטיבה ואשליות אופטיות מסוימות).

איור 2: קרניים מפוזרות מנקודה על הדובי מתרכזות בנקודה אחת על רשתית העין.

כעת חישבו על אותה נקודה על העצם שמפיצה אור אל הקיר. אם נחשוב על הקיר כעל המסך או הרשתית, כל החיישנים מזהים אור בכל רגע ומכל כיוון. לא ניתן להסיק מהיכן הגיעו קרני האור. נניח ועל העצם יש נקודה אדומה, נקודה כחולה ונקודה ירוקה במקומות שונים עליו. האור משלושת הנקודות מגיע לכל נקודה על הקיר-מסך ולכן על כל נקודה נקבל ערבוביה של כל הנקודות וכל הצבעים (ראו איור 3). בצורה כזאת לא נוכל לבנות תמונה על הקיר ולכן אין דמות משתקפת בו.

איור 3: כל נקודה בדובי מאירה על כל נקודה בקיר ולכן לא ניתן לפענח דמות ברורה של דובי על הקיר.

פעולת העדשה המרכזת

ישנם שלושה מכשירים אופטיים שיודעים לייצר דמות: מראה, חריר צר ועדשה. אני אעסוק רק בעדשה מכיוון שזה המכשיר שנמצא בתוך מצלמה.

כבר ראינו שניתן 'לתקן' את הקיר על ידי שימוש בזכוכית מגדלת שהיא בעצם עדשה מרכזת. גם בעין שלנו יש עדשה מרכזת, וכעת אנחנו יכולים להבין מהי מטרתה העיקרית: יצירת דמות על הרשתית.

מבלי להיכנס לאיך ולמה זה קורה, עדשה מרכזת היא מכשיר אופטי שאוסף קרני אור ומרכז אותן לנקודה אחת. במילים אחרות, כל הקרניים שיוצאות בזוויות שונות מנקודת מקור בודדת מתרכזות בצד השני של העדשה לנקודה אחת במרחק מסוים שתלוי בתכונות העדשה (מרחק המוקד) ובמרחק המקור מהעדשה. אם כך, במידה ומיקמנו נכון את העדשה, היא דואגת שאור מכל נקודה על העצם מגיע רק לנקודה אחת על הקיר. במקרה זה נוכל לפענח על הקיר תמונה שאותה אנחנו מכנים בעגה 'דמות' (ראו איור 4).

איור 4: עדשה מרכזת. כל הקרניים היוצאות מאותה נקודה מתרכזות בנקודה אחת מהצד השני של העדשה.

כדי למצוא את נקודת הצטלבות הקרניים אנחנו נעקוב אחרי שתי קרניים פשוטות להבנה. קרן שעוברת במרכז העדשה לא נשברת וממשיכה ישר, קרן מקבילה לציר האופטי נשברת כך שתעבור דרך נקודת המוקד של העדשה, כפי שניתן לראות באיור 5 (למעשה כך מוגדרת נקודת המוקד, הנקודה בה מצטלבות כל הקרניים המקבילות העוברות בעדשה).

[הערת שוליים: מדויק רק עבור עדשות דקות, אבל הדיוק לא ממש חשוב לרשימה הזאת.]

איור 5: מציאת דמות של מקור נקודתי על ידי הצטלבות של שתי קרניים פשוטות לשרטוט.

כעת, כשמצאנו את נקודת ההצטלבות של כל הקרניים על ידי שתי קרניים פשוטות, נוכל להעביר כל קרן אחרת שמקורה באותה נקודת מקור ועוברת דרך העדשה. נבחר שתי קרניים שעוברות בקצוות של העדשה, כך שהן תוחמות את רוחב אלומת האור שנאספת על ידי העדשה, כפי שניתן לראות באיור 6.

איור 6: לאחר מציאת נקודת ההצטלבות ניתן להעביר את כל אלומת הקרניים שעוברות מהמקור הנקודתי דרך העדשה.

כיצד משתקף עצם דרך עדשה?

נסמן עצם כחץ מקביל לעדשה, כך שנוכל לזהות 'למעלה' ו-'למטה'. נבחר לעקוב אחרי שתי נקודות בקצוות החץ. כעת נמצא על ידי הקרניים הידועות את מיקום ההצטלבות של שתי הנקודות בצד השני של העדשה.

ישנם מקרים שונים בהם מתקבלות דמויות שונות של החץ (ישרה-הפוכה, 'ממשית'-'מדומה', מוגדלת-מוקטנת) כתלות במרחק של החץ מהעדשה. נתמקד במרחקים שבחרתי באיור 7. ניתן לראות שהתקבלה דמות חץ בצד השני של העדשה. אם נציב מסך, או קיר, בנקודה זאת, נוכל לראות עליה את דמות החץ ההפוכה והמוגדלת.

איור 7: מציאת דמות לא נקודתית באמצעות שתי קרניים מוכרות משתי נקודות בקצוות מנוגדים של העצם. ניתן לראות שהדמות על המסך, במקרה זה, תראה הפוכה ומוגדלת.

מה קורה אם נציב עוד עצם מאחורי העצם הראשון?

נשרטט את הדמות של החץ הראשון (A באיור 8) ונמקם שם מסך, כך שהדמות תראה עליו בצורה חדה. הדמות של החץ הרחוק יותר (B באיור 8) איננה יוצאת על המסך, והקרניים שנחתכו שם ממשיכות אל המסך כך שאלומת האור מכל נקודה מתרחבת. על המסך יתקבל כתם במקום נקודה, כפי שניתן לראות באיור 8. המקרה באיור כל כך חמור ששני הקצוות של החץ מרוחים על כל המסך ואחד על השני. מכאן שלא נוכל לראות את החץ הרחוק על המסך כלל. זהו בעצם הרעיון שמאחורי המושג עומק השדה. הדיון הוא על תחום המרחקים שבו עצמים יראו בתמונה (כלומר על המסך) בצורה חדה באופן יחסי.

איור 8: המסך ממוקם כך שהדמות של גוף A תראה עליו בצורה חדה, כלומר כל נקודה בעצם מועתקת לנקודה על המסך שהיא הדמות. מכיוון שהדמות של גוף B לא נמצאת בדיוק על המסך, אלומת האור מתרחבת ובמקום נקודה אנחנו מקבלים על המסך כתם.

אז מה הקשר של כל זה לצמצם?

אם נניח שהצמצם צמוד לעדשה במצלמה, נוכל להניח במודל פשוט שהצמצם בעצם קובע את גודלה האפקטיבי של העדשה על ידי כך שהוא חוסם אור מלהגיע לחלקים חיצוניים שלה.

אם כך, בואו ונבחן שוב את גודל הכתמים עבור אותו עצם, באותו מרחק ועם עדשה עם אותו מרחק מוקד, אבל הרבה יותר קטנה (צמצם סגור). נשרטט לשם כך את הקרניים שתוחמות את האלומה בקצוות העדשה. קל לראות באיור 9 שגודל הכתמים קטן באופן משמעותי, עד כדי כך שהכתמים כבר אינם חופפים. כלומר, נראה דמות, גם אם מטושטשת.

אם כך, הגענו לסוף הדרך. ראינו שככל שהצמצם סגור יותר, גודל הכתם שנוצר מעצמים שאינם ממוקדים היטב יהיה קטן יותר ולכן המרחק של עצמים מהעצם הממוקד יכול להיות גדול יותר. ובמילים אחרות: ככל שהצמצם סגור כך גדל עומק השדה בתמונה.

 

איור 9: בעדשה יותר קטנה (צמצם סגור) פתיחת הקרניים של העצם הרחוק יותר (B) לאחר שהצטלבו בנקודת הדמות היא צרה יותר ולכן הכתם של כל נקודה על המסך קטן יותר ומכאן שעומק השדה גדול יותר.

 

[הערת שוליים: במהלך הכתיבה של רשימה זאת נעזרתי בשיחות עם ד"ר ערן גרינולד, הגואו-טו-גאי שלי בענייני אופטיקה ודברים אחרים. כל הטעויות ברשימה הן שלי.]

 

:קטגוריותכללי תגיות: , ,

זמן טוב לחשיבה ביקורתית – "The skeptics' guide to the universe", יומן קריאה

הטקסט הזה נכתב ביום של בחירות. הרשתות החברתיות (ולא פעם אתרי וערוצי החדשות) רוחשות תיאוריות קונספירציה. נראה שאין תהום מוסרית שפעילים פוליטיים אחדים לא יהיו מוכנים לצלול אליה כדי לקדם (לדעתם) את ניצחון הצד שלהם.

מכיוון שהתפנה לי מעט זמן עקב השבתון, עלה בדעתי שזאת הזדמנות מצוינת לכתוב על הספר:

"The skeptics' guide to the universe – how to know what's really real in a world increasingly full of fake"

מאת סטיבן נובלה וחברים מהפודקאסט בעל אותו השם.

צילום של העותק שלי של הספר. כרגיל, יכולות הצילום שלי מחרידות.

***

לפני שנים מספר, כשהייתי מכור כבד לטלוויזיה, צפיתי בסרט דוקומנטרי בערוץ 8 דאז. הנושא היה מתקפת הטרור על מגדלי התאומים בארה"ב ואינני זוכר את שמו. הסרט העלה רצף של טענות וצירופי מקרים ושאל שאלות פתוחות בנושא. לדוגמה, איך יכול להיות שהבניין קרס בצורה כזאת וכזאת אם המומחה הזה והזה לבניינים אומר שזה לא הדרך הנכונה. או איך יכול להיות שהיו שיחות טלפון מאחת הטיסות למרות שגורם ממשלתי אמר כך וכך. או איך יכול להיות שבסרטון רואים את הדגל האמריקאי מתנפנף ברוח למרות שעל פני הירח אין אוויר. כהנה וכהנה. המסר של הסרט היה ברור. יש רק הסבר אחד אפשרי לכל האנומליות האלה: "It was an inside job". הפרזנטציה היתה מושלמת ובסיומו של הסרט חשבתי שגם אם רק חצי ממה שהוצג נכון, וגם אם המסקנה הסופית קצת מוגזמת, יש כאן לא מעט דברים שקשה להסביר.

לקח לי זמן להבין שנפלתי בצורה תמימה לתוך חור שחור של תיאורית קונספירציה שההיתכנות שלה היא לא אפסית, אלא פחות מאפסית. מזל שלא מכרו לי על הדרך יחידת נופש.

אבל הרי אנחנו יודעים שקנוניות אמיתיות אכן מתרחשות, אז מה הופך תיאוריות קונספירציה (סרק סרק) למה שהן ובמה הן שונות מסתם קנוניות (התרגיל המסריח)?

הספר נותן בהן את הסממנים הבאים:

  1. קנונית העל – כדי שתיאורית הקונספירציה תהיה נכונה היא צריכה לכלול שיתוף פעולה והשתקה של כמות עצומה של אנשים וארגונים, לפעמים אפילו מדינות. פעמים רבות הגורמים השונים הם בעלי אינטרסים סותרים. כולם שותפים. רק צבא האור רואה את האמת וחושף אותה.
  2. חשיבה קונספירטיבית – מדובר במערכת אמונה סגורה, המבודדת מכל ביקורת חיצונית ואינה מצריכה עקביות פנימית. כל ראיה כנגד הקונספירציה היא חלק מהקונספירציה וכל מי שמבקר אותה הוא חלק מהמנגנון. כל התרחשות שאינה מתאימה לנראטיב נובעת מפעולה שנקט הצד השני כדי להסתיר ולהטעות. כל מה שנראה מוזר ולא מוסבר הוא ראיה חותכת לקונספירציה.
  3. הקונספירציה פשוט גדולה מכדי לא להיכשל.
  4. האמת היא שבכולנו יש את הנטייה להימשך לתיאוריות כאלה, מי יותר ומי פחות. אין חלוקה לימין ולשמאל פוליטי, יש מספיק לכולם, אם כי אדם בעל דעות פוליטיות מסוימות יותר פגיע לתיאוריות מהצד הפוליטי שרלוונטי עבורו.
  5. הצורך להרגיש שייך למשהו גדול. לראות את האור במקום שכולם עיוורים. הצורך בשליטה ובסדר, במיוחד לאור אירועים גדולים שאין לנו שליטה עליהם, שהם שנויים במחלוקת והמידע עליהם לוקה בחסר. הנטייה של כולנו לראות תבניות, דבר שהוא הכרחי לחיים אך לפעמים עובד שעות נוספות היכן שלא צריך. חיפוש אובססיבי אחר אנומליות וצורך לתת להן משמעות מיוחדת למרות שכל רגע של חיים מלא באנומליות שקורות מתחת לסף העניין, התודעה או הרגישות שלנו.

***

סטיבן נובלה הוא נוירולוג באוניברסיטת ייל. ביחד עם שני אחיו ועוד מספר חברים הוא מפיק את הפודקאסט בעל אותו השם כמו הספר כבר 14 שנים. הפודקאסט עוסק בשיח על חדשות מדע, בקידום חשיבה ביקורתית וקצת בגיקדום באופן כללי (האחרון יותר אווירה מתוכן).

מה שאני אוהב אצל סטיבן נובלה הוא היכולת שלו לגשת לנושא מסובך, שהוא לא המומחיות המקצועית שלו, לקרוא עליו לעומק, לפרק אותו לחלקים ואז להנגיש אותו בשפה ובצורה כך שכל אחד יכול להבין. בד"כ הוא גם דואג להדגים בצורה מלמדת כיצד הליך המחשבה שלו עובד. לא חייבים להסכים עם כל דעה שלו כדי להעריך את היכולת האנליטית שלו. הדבר הנוסף אצלו שאי אפשר שלא לקנא בו הוא היכולת שלו לנצל את הזמן בצורה מעוררת השתאות. עבודה יומית מאתגרת, פודקאסט שבועי באיכות הפקה גבוהה, שני בלוגים ברמה גבוהה, משפחה וילדים, סיבובי הרצאות רבים במהלך השנה, פודקאסט נוסף בענייני מדע בדיוני ועוד. מתיש רק לחשוב על זה.

מטרת הספר, לפי המחבר, היא לייצר חיבור שמכיל את כל המידע שצריך אדם שמתעניין בנושא חשיבה ביקורתית, בצורה מרוכזת במקום אחד ובצורה נוחה לקריאה. לדעתי הוא עומד במשימה.

תתי הנושאים בהם עוסק הספר הם: חלק ראשון (העיקרי) – מהי חשיבה ביקורתית מדעית (Scientific skepticism), כשלים בחושים שלנו, כשלים קוגניטיביים (בצורת המחשבה), מהו פסאודו-מדע, קצת על פילוסופיה של המדע ומקרים מלמדים מהעבר. לטעמי זה החלק היותר מעניין של הספר. מידע שגם משלים פערים של ידע וגם יכול לשמש בעתיד כמראה מקום. החלקים האחרים של הספר קצרים יותר ועוסקים בסיפורים אישיים של שאר מנחי התוכנית (לטעמי חלק חלש), בקשר למדיה וחדשות (מעניין ורלוונטי), במקרים בהם חוסר בחשיבה ביקורתית הוביל לתוצאות מחרידות ומוות (לא לטעמי, אבל ניחא) וסוג של אפילוג קצר על איך כל אחד יכול ליישם בחיי היום-יום את מה שקרא בספר (אל דאגה, לא קשור לסוגת העזרה העצמית).

לא מדובר בספר קריאה. אין בו עלילה ואין בו מתח, והוא לא דומה כלל לספרים של סימון סינג, למשל. מדובר באסופה של מידע, מסודרת ומסווגת היטב שנוח ללמוד ממנה ולחזור אליה בעתיד כמראה מקום. עם זאת, הספר כתוב בשפה קלילה, ערבוביה של גבוה ונמוך, שמוכרת לכל מי שמאזין לפודקאסט.

ונקודה אחרונה, קחו בחשבון שיש לא מעט בדיחות ורפרנסים שמכוונים לגיקים (מדע בדיוני וכדומה). אבל אם לא הבנתם את זה כבר משם הספר, אז זה עליכם. גם אם לא תמיד יש לי סבלנות לזה, זה תמיד נעשה בחן והשורה התחתונה שלי היא שהיתרונות עולים בהרבה על החסרונות בספר. כשער לעולם של חשיבה ביקורתית, זה אחד הספרים הטובים ביותר שיש, לדעתי.