ארכיון

ארכיון כותב

במקרה הכינותי מראש – על מדידת האפקט הפוטואלקטרי עם מד-מטען

ברשימה האחרונה סיפרתי על תולדותיו של האפקט הפוטואלקטרי ועל חשיבותו בעיני. חלקה האחרון של הרשימה עסק בניסוי של הפיזיקאי האמריקאי רוברט מיליקן שתוצאותיו הראו, מעל לכל ספק, שהמודל של אלברט איינשטיין להסבר התופעה עובד.

אני רוצה לחזור הפעם למערך הניסוי עצמו, לספר איך מבצעים אותו בכיתות הלימוד בתיכונים (מעט מאוד בשנים האחרונות) ולהציע דרך פשוטה יותר אבל לא חינוכית לביצוע הניסוי.

אפתח את הרשימה בהסבר, שכבר הופיע ברשימה הקודמת אבל הכרחי למי שלא קרא אותה, על מערך הניסוי. מי שקרא וזוכר, יכול לדלג.

היי, מותר לי להעתיק מעצמי!

***

מערכת המדידה כוללת שפופרת ואקום ובתוכה שתי אלקטרודות המוחזקות תחת הפרש מתח ביניהן. מאירים על אחת האלקטרודות וגורמים לפליטה של אלקטרונים מהמתכת. מד-זרם מחובר בין החוטים המחברים את שתי האלקטרודות, כך שאם אלקטרונים שנפלטו מאלקטרודה אחת מגיעים לשניה, נראה חיווי על כך. בנוסף, ניתן לשנות את המתח החשמלי בין שתי האלקטרודות כך שהשדה החשמלי ביניהן יוכל לעזור לאלקטרונים להגיע מהאלקטרודה הפולטת לקולטת וגם להפריע. ניתן לשנות את ערכו של המתח המפריע עד לאיפוס הזרם במד הזרם. למתח זה נקרא 'מתח העצירה'.

איור 1: תיאור סכמטי של הניסוי של מיליקן למדידת האפקט הפוטואלקטרי.

נשים לב שמתח העצירה הוא המתח המפריע המינימלי הנדרש כדי לעצור את כל האלקטרונים שנפלטו, כולל האנרגטיים ביותר. כלומר, בעצם מדובר באנרגיה החשמלית הנדרשת לעצירה ששווה לאנרגיה הקינטית שאותה נדרש לעצור. במילים אחרות, מתח העצירה שווה, עד כדי קבוע, לאנרגיה הקינטית המקסימלית של האלקטרונים הנפלטים.

נוכל לבצע ניסוי בו נמדוד את מתח העצירה עבור אורכי גל שונים של אור המוקרנים על האלקטרודה. אם נציץ שוב בנוסחה של איינשטיין (Eph=hf=B+Ek), נראה שהיא חוזה שגרף של מתח העצירה (כלומר בעצם Ek, האנרגיה הקינטית) כפונקציה של התדירות f צריך להראות כקו ישר ששיפועו הוא קבוע פלנק. (הסבר ברור יותר והרחבה על התיאוריה ניתן למצוא ברשימה הקודמת).

***

באופן מעשי, ניתן כיום לקנות שפופרת מתאימה לניסוי. ניתן להאיר עליה באמצעות נורת הלוגן מכוסה בפילטרים בצבעים שונים (אפשר, לדעתי, גם עם נייר צלופן פשוט, אבל לא ניסיתי בעצמי).

[חידת שוליים: האם הפילטרים הם מסוג low-pass או high-pass?]

אין מספיק כסף בבתי הספר לקנות מדי-זרם מדויקים מספיק למדידת רמות הזרם הנמוכות במערכת אבל למזלנו כל שמעניין אותנו הוא המצב בו הזרם מתאפס. מסיבה זאת נהוג לחבר מד-מתח (בחיבור טורי) במקום מד-זרם ולכוון אותו לסקלה הרגישה ביותר. במצב זה קריאת מד-המתח כלל אינה נכונה באף מקרה מלבד זה שמעניין אותנו – זרם אפס.

מסיבה שאני לא לגמרי מבין נהוג לכוון את המתחים השונים בין הקתודה (האלקטרודה המתכתית הפולטת אלקטרונים שעליה מאירים את האור) לאנודה (האלקטרודה הקולטת) באמצעות מפל מתח על נגד משתנה. אינני יודע בוודאות מדוע לא מחברים את מקור המתח ישירות לשפופרת. אולי זה נעשה כדי שיהיה קל לקבוע את המתח המקסימלי האפשרי על השפופרת באמצעות סוללה ובכך להגן עליה מתלמידים, או אולי זה פתרון זול יותר. אם כך או אם כך, כך נהוג.

שרטוט של מערכת המדידה נראה כעת הרבה יותר מורכב ומאתגר עבור התלמידים.

איור 2: תיאור סכמטי של מערך הניסוי למדידת האפקט הפוטואלקטרי בכיתת הלימוד בתיכון.

***

הרשו לי כעת להציע מערכת מדידה חלופית לניסוי הזה. היא הרבה יותר פשוטה להרכבה, הרבה יותר חכמה להבנת הפיזיקה אבל אולי לא כל כך מומלצת ללימוד בכיתה.

נזכר שמטרת מקור המתח החיצוני היא לייצר מצב שבו הזרם דרך השפופרת מתאפס, וכך נוכל למדוד את מתח העצירה. ישנה אפשרות הרבה יותר פשוטה לאלץ את הזרם בשפופרת להיות אפס למרות ההארה – ניתן לנתק ממנה את החוטים.

אם ננתק את החוטים המחוברים לאנודה ולקתודה, ברור שזרם אינו יכול לזרום, אך מתח חשמלי כן מתפתח ביניהן עקב ההארה ופליטת אלקטרונים. האור פוגע בקתודה וגורם לקריעת אלקטרונים, והם מצטברים מכיוון שאין זרם שיסחוף אותם משם והלאה. הצטברות המטען גורמת לעליית המתח (הפרש פוטנציאל חשמלי) בין האלקטרודות, שבתורו גורם להתנגדות להצטברות של מטען נוסף עקב כוחות דחייה חשמליים. המתח שבו יתקבל שיווי משקל הוא מתח העצירה.

אם כן, מתח העצירה הוא המתח בין הקתודה לאנודה תחת הארה כאשר הן מנותקות, וכל שנותר הוא למדוד אותו. אך פה קבור הכלב.

ההנחה שלנו בשימוש במד-מתח הוא שהוא מהווה נתק ולא מתפקד כהתנגדות נוספת במעגל. עם זאת, ברור שמד-מתח אינו נתק מכיוון שהוא מודד מתח עלי ידי הזרמת זרם (בכמות קטנה) דרכו. כלומר, אנחנו מניחים שהתנגדות הכניסה של מד-המתח היא גדולה מאוד ביחס לשאר ההתנגדויות במעגל. התנגדות הכניסה של מד-מתח רגיל במעבדה הוא מסדר גודל של כמה מגה-אוהמים. חיבור מד-מתח כזה בין הקתודה לאנודה יגרום לזרימה גדולה מידי ולשינוי המתח הפנימי, כך שלא נצליח למדוד את מתח העצירה.

אחח.. אם רק היה לנו במעבדה מד מתח עם התנגדות כניסה גבוהה בסדרי גודל…

במקרה הכינותי מראש רשימה שבה הסברתי שמד-מטען הוא מד מתח בתחפושת עם התנגדות כניסה גבוהה מאוד (וקבל שלא יפריע לנו).

כל שנותר הוא להאיר על השפופרת באורכי גל שונים ולמדוד את המתח באמצעות מד-מטען (קולון-מטר בעגה התיכונית). את הפקטור בין קריאת מד-המטען למתח עליו קובע הקבל בפנים. אם הוא לא ידוע לכם, אפשר פשוט לחבר מתח ידוע למכשיר ולקבוע את הערך בקלות.

ניסיתי, זה עובד מעולה. 15 דקות גג והניסוי גמור, כולל גרף וניתוח.

איור 3: תיאור סכמטי של מערך הניסוי למדידת האפקט הפוטואלקטרי אך ורק עם מד-מטען.

***

לדעתי יש שני דברים טובים בשיטה הזאת. הראשון הוא שהיא פשוטה יותר לביצוע. השניה היא שמי שהבין מדוע מקבלים את התוצאה הנכונה גם במקרה זה, הבין את הכל, לטעמי.

האם כך הייתי מדריך כיתת פיזיקה בתיכון? לדעתי לא. המערכת הרגילה אמנם מכילה יותר רכיבים, אך רעיונית היא ברורה יותר ומאפשרת גם למי שלא הבין עד הסוף את הרעיון הפיזיקלי להבין את הניסוי ולהצליח בו. שווה לנסות כהעשרה (בתוכנית הלימוד הנוכחית: העשרה על העשרה, אשרי המאמין).

***

קרדיט ליוסף סוסנובסקי שלימד אותי את הטריק הזה.

מודעות פרסומת

האפקט הפוטואלקטרי – קווים לדמותו, השנים הראשונות

האפקט הפוטואלקטרי ידוע בטריוויה כ-"הדבר הזה שעליו זכה אלברט איינשטיין בפרס נובל (לא על יחסות!)".

מהו האפקט הפוטואלקטרי, מניין הגיע ולמה זה מעניין?

הסקירה הקצרה הזאת (באופן יחסי…) תתמקד בעבודתם של שלושה פיזיקאים, כולם זוכי פרס נובל, שחקרו, מדדו, הסבירו והוכיחו את האפקט: פיליפ לנארד, אלברט איינשטיין ורוברט מיליקן.

***

נתחיל את הסיפור בפיליפ לנארד (אפשר להתחיל לפני כן, אבל אתמקד בעיקרי הדברים). לנארד היה פיזיקאי גרמני שזכה בפרס נובל על מחקרו בנושא 'קרני קתודה', או כפי שאנחנו מכנים אותן כיום, קרני אלקטרונים (שבאותה תקופה, סוף המאה ה-19 עדיין לא היה ברור מה טיבן). לדוגמה, מחקריו בבליעה של קרניים אלה לתוך חומרים היו גורם מכריע בהבנה שמדובר בשטף של חלקיקים ולא בקרינה אלקטרומגנטית ושהאטום ברובו הוא חלל ריק.

בסדרת ניסויים אחרת הקרין לנארד אור על אלקטרודות מתכתיות. נזכר שאור הוא גל אלקטרומגנטי מחזורי שצבעו קשור לאורך הגל שלו, כלומר למרחק שהוא עובר בזמן שלוקח לו להשלים מחזור שלם של תנודה. אדום בסביבות 650 ננומטר, כחול בסביבות 450 ננומטר, ואורכי גל קצרים יותר נקראים אולטרה-סגולים (UV). הקשר בין אורך הגל והתדירות הוא שהתדירות שווה למהירות האור חלקי אורך הגל.

איור 1: הספקטרום האלקטרומגנטי. המקור לאיור: ויקיפדיה, לשם הועלה על ידי המשתמש Inductiveload.

התובנות החשובות לעניינינו שעלו מניסוייו של לנארד הם: 1) ניתן לגרום לפליטה או 'קריעה' של אלקטרונים מאלקטרודה מתכתית על ידי הארה עליה באור אולטרה-סגול, 2) קיימת תדירות סף (קשור, כאמור, לצבע האור) שמתחתיה אין פליטה כלל ומעליה יש פליטה, 3) שימוש באלקטרודות מחומרים שונים גורם לשינוי במהירות (או האנרגיה הקינטית) של האלקטרונים הנפלטים, לשינוי בתדירות הסף אבל לא משפיע על כמות המטען הנפלט (בהנחה שמקור ההארה זהה).

תוצאות ניסוייו של לנארד סתרו את מודל הגלים. אנסה להסביר מדוע על ידי אנלוגיה. חישבו על גלי ים שמכים בצוק שוב ושוב במשך שנים. בכל כמה רגעים מתנפץ לו גל מים על הצוק ושוחק אותו מעט. גלים חלשים שוחקים את המצוק לאט, גלים חזקים יותר מהר. אבל בסיכומו של דבר, גם גלים חלשים ישחקו את המצוק את נחכה מספיק זמן.

לא כך המצב בניסויו של לנארד. אם הגל מתנודד מעל לתדירות הסף מתרחשת קריעת אלקטרונים מהחומר, ואם מתחת אז אלקטרונים אינם מושפעים כלל. לא משנה כמה זמן נחכה, אין אפקט מצטבר. תוצאה זאת אינה תואמת מודל גלים. ישנן סתירות נוספות אך אסתפק בזאת.

***

לפני שאגיע להסבר הפשוט של איינשטיין לתופעה, נאלץ לעשות תחנת ביניים.

היתה בעיה בפיזיקה באותן שנים שנקראת 'קרינת גוף שחור' ואינני רוצה להתעכב עליה מכיוון שהיא דורשת חיבור בפני עצמו. אספר רק בקיצור נמרץ שהתיאוריה והניסוי בתחום זה לגבי עוצמת הקרינה הנפלטת מגוף שחור בתדרים שונים סתרו אחד את השני באופן ניכר ואף מביך ('הקטסטרופה בעל-סגול'). הפיזיקאי הגרמני, זוכה פרס הנובל, מקס פלנק, הנחשב למחולל תורת הקוונטים, פתר את הבעיה על ידי הנחה מוזרה.

פלנק הניח, רק לשם הפתרון, שהקרינה האלקטרומגנטית שנפלטת מגוף שחור מתקיימת בחבילות בדידות, ושכמות האנרגיה בכל חבילה נתונה על ידי קבוע (שידוע היום כקבוע פלנק) כפול התדירות. הנחה זאת אמנם לא התיישבה עם תורת גלים אבל היא הניבה את ההתפלגות הנכונה של הקרינה מגוף שחור בתדרים השונים.

איינשטיין, באחד מ-4 המאמרים המפורסמים שלו משנת 1905, לקח את הרעיון הזה והלך אתו אף רחוק יותר. הוא הניח שחבילות הקרינה של פלנק יכולות לתפקד כסוג של חלקיקים (שאותם אנחנו מכנים היום פוטונים). חבילת אור אחת, או פוטון אחד, של אור פוגע באלקטרון אחד בחומר, אחד-על-אחד, מתנגש בו ומעניק לו את האנרגיה שהוא נושא. כזכור, לפי פלנק, אנרגיה של חבילת אור תלויה בקשר ישר בתדר. אם אנרגיית הפוטון גדולה מספיק כדי להתגבר על הכוחות המחזיקים את האלקטרון בתוך החומר, אז האלקטרון יפלט החוצה. ההפרש שנשאר בין המחיר האנרגטי לקריעת האלקטרון לבין האנרגיה המקורית של הפוטון היא האנרגיה הקינטית שבה יפלט האלקטרון.

נוכל לסכם זאת בנוסחה הפשוטה הבאה: Eph=hf=B+Ek, כך ש- Eph היא אנרגית הפוטון, h קבוע פלנק, f תדירות, B פונקציית העבודה כלומר האנרגיה הדרושה לקרוע אלקטרון מהחומר ו- Ek האנרגיה הקינטית (פרופורציונית למהירות בריבוע).

נשים לב שהסבר פשוט זה מתאים לכל תוצאותיו של לנארד. תדירות הסף תתקבל כאשר אנרגיית הפוטון שווה בדיוק לפונקציית העבודה, כך שהאנרגיה הקינטית שווה לאפס. אם נחליף אלקטרודת פליטה בעצם נשנה את פונקציית העבודה B. ואכן, לפי המודל, תדירות הסף והאנרגיה הקינטית ישתנו. מספר האלקטרונים הנפלטים לא ישתנה כי הוא תלוי בכמות הפוטונים המגיעים ולכם באופי מקור האור.

***

רוברט מיליקן, פיזיקאי אמריקאי, היה משוכנע שהתיאוריה של איינשטיין שגויה מכיוון שהיו עדויות רבות מידי שהאור הוא גל (למשל ניסוי יאנג – שני הסדקים – לקבלת תמונת התאבכות). מיליקן עבד 10 שנים כדי לבנות ולשפר מערכת מדידה שבאמצעותה יוכל להוכיח את צדקתו.

מערכת המדידה כוללת שפופרת ואקום ובתוכה שתי אלקטרודות המוחזקות תחת הפרש מתח ביניהן. מאירים על אחת האלקטרודות וגורמים לפליטה של אלקטרונים מהמתכת (ראו איור 2). מד-זרם מחובר לשתי האלקטרודות, כך שאם אלקטרונים שנפלטו מאלקטרודה אחת מגיעים לשניה, נראה חיווי על כך. בנוסף, ניתן לשנות את המתח בין שתי האלקטרודות כך שהשדה החשמלי ביניהן יוכל לעזור לאלקטרונים להגיע מהאלקטרודה הפולטת לקולטת וגם להפריע. ניתן לשנות את ערכו של המתח המפריע עד לאיפוס הזרם במד הזרם. למתח זה נקרא 'מתח העצירה'.

איור 2: תיאור סכמטי של הניסוי של מיליקן למדידת האפקט הפוטואלקטרי.

נשים לב שמתח העצירה הוא המתח המפריע המינימלי הנדרש כדי לעצור את כל האלקטרונים שנפלטו, כולל האנרגטיים ביותר. כלומר, בעצם מדובר באנרגיה החשמלית הנדרשת לעצירת אלקטרון ששווה לאנרגיה הקינטית של אלקטרון שאותו נדרש לעצור. במילים אחרות, מתח העצירה שווה, עד כדי קבוע, לאנרגיה הקינטית המקסימלית של האלקטרונים הנפלטים.

נוכל לבצע ניסוי בו נמדוד את מתח העצירה עבור אורכי גל שונים של אור המוקרנים על האלקטרודה. אם נציץ שוב בנוסחה של איינשטיין, נראה שהיא חוזה שגרף של מתח העצירה (כלומר בעצם Ek) כפונקציה של התדירות f צריך להראות כקו ישר ששיפועו הוא קבוע פלנק.

ב-1914 פרסם מיליקן את תוצאותיו שהוכיחו מעל לכל ספק שהתיאוריה של איינשטיין נכונה. ב-1921 זכה איינשטיין בפרס נובל על הסברו לאפקט הפוטואלקטרי. פרס נובל על עבודה תיאורטית ניתן (למיטב ידיעתי) רק על כאלה שכבר הוכחו בניסוי.

[הערת שוליים: דוגמה עדכנית לכך היא פרס הנובל בו זכה פיטר היגס על פיתוח התיאוריה עבור 'בוזון היגס'. את התיאוריה הציע כבר בשנות ה-60. ההכרזה על גילוי החלקיק במאיץ החלקיקים בסרן היתה בשנת 2012, ובשנת 2013 הוענק להיגס הפרס.]

ב-1923 זכה מיליקן בפרס נובל ושימו לב לפנינה הבאה שצילמתי מתוך ההרצאה שנתן בטקס (מקווה שלא הוצאתי יותר מידי מהקשרו):

***

לדעתי, החשיבות העיקרית של האפקט הפוטואלקטרי היא בכך שהוא היה מהמבשרים הראשונים של תורת הקוונטית שתעלה על הבמה ותנפץ הרבה ממה שחשבו הפיזיקאים שכבר היה 'סגור' ומובן. האפקט גם הראה שלא ניתן יהיה עוד להסתפק בדעה שאור הוא פשוט גל אלקטרומגנטי. למעשה גם בימים אלה עדיין לא סיימנו להתווכח האם אור הוא גל, חלקיק, גם וגם או משהו אחר לגמרי.

***

סוף

***

נ.ב

בשולי הדברים רציתי לציין אנקדוטה שאינה חשובה כלל לנושא אך מראה לנו שוב שמדע נעשה על ידי אנשים.

פיליפ לנארד היה אמנם גאון פיזיקלי אבל היה גם אנטישמי קולני, מתנגד למדע 'יהודי' והיה גם חלק ממנגנון השלטון הנאצי בזמן הרייך השלישי. בסוף מלחמת העולם השניה וכיבוש גרמניה על ידי בעלות הברית הודח ומפאת גילו נשלח לסיים את חייו בכפר נידח ובשקט יחסי (מת שנתיים אחרי תום המלחמה).

מדי מטען ואיך לבנות אותם

אתחיל בווידוי. בכל שנותיי באקדמיה מעולם לא השתמשתי במד מטען חשמלי. למען האמת, מעולם לא שמעתי על מד מטען חשמלי.

הכרתי, באופן אינטימי, מד-זרם ומד-מתח, אבל לא מד-מטען. בהתחשב בעובדה שהגורם לקיומם של זרם ומתח הוא מטען חשמלי, ניתן לחשוב שזה דבר די מוזר, אבל יש לכך סיבות טובות. א': מעולם לא עלה הצורך במכשיר שכזה, ב': מד-מטען הוא בעצם מד-מתח בתחפושת.

אבל נתחיל בהתחלה.

***

על מה אנחנו מדברים כשאנחנו מדברים על מטען חשמלי?

כל גוף מורכב מאטומים וכל אטום (שאינו מיונן) מכיל מספר זהה של פרוטונים בעלי מטען חיובי ואלקטרונים בעלי מטען שלילי. לכן, למרות שמספר האטומים, מספר האלקטרונים ומספר הפרוטונים בגוף כלשהו הוא עצום, סך המטען החשמלי עליו הוא אפס.

נוכל לשנות זאת, למשל, על ידי קריעה של אלקטרונים מגוף א' והעברתם לגוף ב'. בסוף תהליך זה נקבל שני גופים, האחד טעון חיובית והשני טעון שלילית. העברת המטענים יכולה להתבצע על ידי שפשוף שני משטחים בעלי תכונות מתאימות, למשל בלון בסוודר מצמר, או בשיער הראש.

המטען החשמלי, שאותו נרצה למדוד, הוא המטען העודף שמפר את הניטרליות.

תמונה 1: חתול שהשתפשף בפצפוצי קלקר שעכשיו דבוקים אליו בגלל חשמל סטטי. המקור לתמונה: ויקיפדיה, לשם הועלתה על ידי המשתמש Sean McGrath.

***

נניח שיש בידינו גוף מוליך טעון ונרצה לדעת מה כמות המטען עליו. לשם כך נהיה חייבים להעביר את המטען לגוף אחר.

חישבו על מיכל מים אטום. כדי לדעת כמה מים הוא מכיל נצטרך להזרים את המים החוצה ולבצע את אחת משני המדידות הבאות: 1) למדוד את כמות המים שעברה בצינור הניקוז באמצעות שעון מים, 2) לרוקן את המים למיכל שנפחו ידוע ולבדוק כמה הוא התמלא.

השיטה הראשונה אנלוגית למדידת זרם חשמלי והשניה למדידת מטען.

כלומר שלשם מדידת מטען הדבר הראשון שנחוץ לנו הוא דלי.

***

עבור מטען חשמלי הדלי נקרא קבל.

קבל חשמלי הוא רכיב חשמלי סטנדרטי שיכול לאגור מטען. יש לו שני חיבורים חשמליים שביניהם ניתן להפעיל מתח חשמלי, וכתוצאה ייאגר מטען בקבל. לאחר סיום צבירת המטען בו, אין מעבר זרם חשמלי דרכו והוא מהווה נתק במעגל. כמות המטען שתיאגר בקבל תלויה במתח עליו ויכולת הקיבול שלו שקשורה לצורתו ולחומרים מהם הוא בנוי. היא נתונה על ידי הקשר הבא:

Q=C*V

כאשר, Q כמות המטען החשמלי, V המתח ו-C הקיבול.

השלב הראשון במדידת המטען הוא העברת המטען, או חלקו, לקבל על ידי יצירת מגע בין הגוף הטעון לבין אחד החיבורים או 'הרגליים' שלו. בהנחה שבחרנו קבל שערכו ידוע לנו, נוכל לקבוע את המטען עליו על ידי מדידת מתח.

זהו, סיימנו, לא?

תמונה 2: קבלים מכל מיני סוגים ירדו אלי ביום אביב נעים. המקור לתמונה: ויקיפדיה, לשם הועלו על ידי המשתמש Eric Schrader.

***

לא.

באופן תיאורטי מד-מתח אינו מאפשר זרם חשמלי דרכו ומודד את הפרש הפוטנציאל בין שתי נקודות שהוא מחובר אליהן, באורח קסום, ללא הפרעה למעגל החשמלי. באופן מציאותי זורם דרכו זרם (קטן) שגורם לשינוי בחוגה (אנלוגית או דיגיטלית) וכך מורה על המתח. מד-המתח הוא חור בדלי ולא יאפשר לנו לקבל מדידה יציבה.

נרצה לייצר מדידת מתח הצורכת זרם אפסי שבאפסיים. לשם כך נשתמש בטריק נוסף שיאפשר לנו להעביר את קריאת המתח ללא העברת זרם.

***

מגבר שרת (OP AMP) הוא רכיב סטנדרטי שבו ערך המתח ברגל היציאה שווה להפרש המתחים בין שתי רגלי הכניסה כפול מספר כלשהו שהוא ההגבר. אם ההגבר אינסופי, המתחים על רגלי הכניסה יהיו חייבים להיות זהים זה לזה כדי לקבל מתח סופי ביציאה (שימור אנרגיה). הזרמים והמתחים במעגל יסתדרו כך שזה יקרה. ההגבר ברכיב מציאותי אמנם אינו אינסופי, אך הוא מספיק גדול כך שבקרוב טוב המתח על רגלי הכניסה זהה.

נוכל לחבר את מתח הקבל לרגל כניסה אחת ואת רגל הכניסה השניה לרגל היציאה. אם המתח על רגלי הכניסה חייב להיות שווה, אז המתח ברגל היציאה חייב להיות שווה למתח הקבל בכל רגע. אך שימו לב שהמתח בנקודות אלה לא שווה בגלל שהן מחוברות אחת לשניה, אלא להפך, הן מנותקות ולא זורם דרכן זרם (בקירוב). החיבור הזה מכונה בעגה buffer או voltage follower.

איור 3: סכמה של מגבר שרת בחיבור buffer. המקור לאיור: ויקיפדיה, לשם הועלה על ידי המשתמש Inductiveload.

אם כך, הצלחנו לקרוא את מתח הקבל מבלי לרוקן אותו. במובן מסוים, אנחנו אוכלים את העוגה ומשאירים אותה שלמה. את המחיר אנחנו משלמים לחברת חשמל על אספקת האנרגיה לתפעול המגבר, ובאופן חד פעמי למפעל שבנה אותו.

את המתח ביציאה מהמגבר נוכל למדוד על ידי מד-מתח.

***

בעצם כל מה שעשינו הוא לרכז את המטען הנמדד בקבל שתכונותיו ידועות ולקרא את המתח עליו. בין מד-המתח לבין הקבל בנינו סוג של שכבת בידוד שמעבירה את קריאת המתח ללא העברת זרם. כלומר דאגנו שמד-המתח לא יהיה רכיב נוסף במעגל הנמדד.

למעשה, מלבד הקבל, תארנו בנייה של מד-מתח. כל מד-מתח הוא מעגל מודד זרם (למשל גלוונומטר אנלוגי) המחובר למעגל הנמדד דרך התנגדות כניסה גבוהה. רק דאגנו שהתנגדות הכניסה שלנו תהיה ממש ממש ממש גבוהה (טרה-אוהמים) ולא סתם ממש ממש גבוהה (מגה-אוהמים) כמו במד-מתח רגיל.

לסיכום: מד-מטען זה שם מפואר למד-מתח עם התנגדות כניסה מאוד-מאוד גבוהה שמחובר בטור לקבל.

מד-מטען הוא מד-מתח בתחפושת.

***

ברשימה אחרת אספר על שימוש מפתיע שניתן לעשות עם מד-מטען שאינו מדידת מטען.

[הערת שוליים: ניתן גם לבנות מד-מטען מסוג 'אלקטרוסקופ' שבעיקר משמש כיום להמחשה בכיתות לימוד].

ניצוצות לגבות, רסיסים לריסים – על למה לא כדאי להכניס מתכות למיקרוגל

לפני מספר חודשים נשאלתי מדוע אסור להכניס מתכות לתנור המיקרוגל. עניתי בביטחון "זה ברור, כי המתכת תגרום לניצוצות ולהתלקחות. כולנו ראינו את הסרטונים ביוטיוב". "אבל למה המתכת גורמת לכל זה?". עניתי בביטחון "אהמהמהממה…". תוך כדי שעניתי, הבנתי שאני לא יודע את התשובה ברמה שמאפשרת להסביר לאדם אחר. עד אותו רגע חייתי את חיי כאדם שמשוכנע שהוא יודע את התשובה, ואז פתאום לא. עצרתי ואמרתי שאבדוק בהמשך.

ההמשך זה עכשיו.

להפתעתי גיליתי שזה לא בדיוק נכון שאסור להכניס מתכת למיקרוגל, אם כי, כפי שתבינו בהמשך, אני אכן לעולם לא אעשה זאת ואני מציע גם לכם להימנע מכך.

אז הנה מה שאני הבנתי מכל העניין.

תמונה 1: תנור מיקרוגל למטבח. המקור לתמונה: ויקיפדיה, לשם הועלתה על ידי המשתמש 吉恩 שזה ז'אן לפי גוגל-טרנסלייט.

***

תנור המיקרוגל הוא קופסת מתכת שלתוכה מוזנים גלים אלקטרומגנטיים בתדר גבוה. הגלים מוחזרים הלוך ושוב מהקירות המוליכים ופוגעים ונבלעים באוכל שמונח בפנים. הגלים גורמים למולקולות מקוטבות חשמלית (כמו מים, שומנים וסוכרים) להסתובב בכיוון השדה, ולכן הלוך ושוב, וכך גורמים לחימומו של האוכל. נזכיר, מבלי להיכנס לפרטים מדויקים, שככל שמולקולות רוטטות יותר טמפרטורת החומר גבוהה יותר.

במכשירים הביתיים הגלים האלקטרומגנטיים המוזנים לחלל החימום מתנודדים בתדירות של כ-2.5 ג'יגה-הרץ, כלומר מסיימים מחזור תנודה 2.5 מיליארד פעמים בשניה (בין גלי רדיו לאינפרה-אדום). אורך הגל הוא כ-12 סנטימטר, מסדר הגודל של ממדי חלל החימום. המקור שמייצר את הגלים נקרא 'מגנטרון', והוא רכיב מתוחכם ומורכב שלהבנת עקרון פעולתו נדרשת רשימה נפרדת. למעוניינים, אפשר להתחיל מהסרטון הקצר הזה.

עוצמת הגלים בתוך המיקרוגל אינה שווה בכל מקום בחלל החימום. אם אין אוכל שסופג את הגלים, ייווצר בתוך החלל, עקב חיבור הגלים הבאים והולכים, גל עומד. הכוונה היא שבכל נקודה גודל התנודה המקסימלי של הגל תהיה קבועה (גדולה או קטנה, תלוי במיקום), בניגוד לגל נע שבו גודל התנודה נע במרחב עם תנועת הגל. זאת הסיבה שיש בתוך המיקרוגל צלחת מסתובבת, כדי שכל האוכל יעבוד דרך הנקודות שבהם יש תנודות חזקות יותר, וכך החימום יהיה אחיד בכל הצלחת. אצלי בבית הצלחת לא מסתובבת ואני נאלץ לקבל רק חצי מהפופקורן מכל שקית והאוכל בצלחת חלקו חרוך וחלקו קר. אני ממליץ לצפות בסרטון הזה שמדגים את התופעה בצורה מאוד משכנעת לדעתי.

***

אז מה הבעיה עם מתכת בתוך המיקרוגל?

המיוחד במתכת הוא שהאלקטרונים בה חופשיים לנוע. במצב סטטי האלקטרונים יסתדרו כך שהשדה החשמלי בתוך המתכת יהיה אפס, כך שאין סיבה לתנועה וכל המערכת בשיווי משקל. כלומר, במצב סטטי אין שדה חשמלי בתוך מוליך. במידה וצורת המוליך היא כדור, ואין שדה חיצוני המטענים יתפזרו באופן שווה על הדפנות, מטעמי סימטריה.

אם הגוף אינו כדור מושלם, ריכוז המטענים על פני הדפנות אינו אחיד. באזורים מחודדים יהיה ריכוז מטען גבוה יותר. כמו כן, אם מדובר בכדור, אך הוא נמצא בשדה חיצוני, גם אז פילוג המטען על הדפנות לא יהיה אחיד. מטענים חיוביים ינועו עם כיוון השדה ומטענים שליליים כנגדו, כלומר הגוף יעבור קיטוב של המטען בו.

איור 2: המחשה של פילוג המטען בכדור מוליך ללא שדה חשמלי ותחת שדה חשמלי ובלי או עם שפיץ.

בתגובה לשדה אלקטרומגנטי אשר מתנודד בזמן, מטענים ינועו הלוך ושוב כתגובה לשדה החשמלי המשתנה וייווצרו זרמים בתוך המוליך. זרמים אלה עדיין מאפסים את השדה בתוך המוליך מעומק מסוים, ולכן אני אניח עבור הסבר זה שגם במצב הדינאמי השדה החשמלי בתוך המוליך הוא אפס.

מכיוון שהשדה החשמלי בתוך המוליך הוא תמיד אפס, ברור שהגל האלקטרומגנטי (שחלקו הוא שדה חשמלי) לא חדר לתוכו, ומכאן ברור שהאנרגיה שנושא הגל מוחזרת. כלומר, משטח מתכתי מהווה 'מראה' עבור גל אלקטרומגנטי. זאת הסיבה שהגלים שמוזנים לחלל החימום מוחזרים מקירות החלל. זאת גם הסיבה שהגלים אינם בורחים החוצה. על הדלת יש רשת מתכתית שמהווה גם היא קיר כל עוד 'החורים' קטנים מאורך הגל.

כעת אנחנו מוכנים לדון בבעיות שנוצרות עקב הכנסה של מתכות לתוך המיקרוגל.

***

נזכר שבגופים מוליכים שנמצאים בשדה חשמלי משתנה בזמן נוצרים זרמים משתנים, ומה שחשוב עבורנו הוא שהזרמים שנוצרים באזורים שפיציים יהיו גבוהים יותר באופן משמעותי מאזורים אחרים. בנקודות שפיץ אלה יתפתח ברגעים מסוימים פוטנציאל חשמלי (מתח) גבוה מאוד ביחס לגוף המתכתי של חלל החימום שהוא בפוטנציאל נמוך. כאשר הצטבר מספיק מטען, הפוטנציאל בשפיץ מספיק גבוה כך שהשדה החשמלי ליד השפיץ גבוה משדה הפריצה של האוויר. במקרה זה האוויר עובר יינון והופך ממבודד למוליך ונראה ברק חשמלי נוצר בין השפיץ לגוף. תופעה זאת עלולה לגרום להתלקחות ולפגיעה במכשיר החשמלי ולכן לא רצויה.

ומה אם נשים מתכת ללא שפיצים? אפשרי, למעשה תוכלו למצוא במיקרוגלים צלחות השחמה, מדפים ממתכת, שקיות לחימום צ'יפס וחפצים נוספים שאינם מזיקים. בנוסף, אם תעטפו את האוכל שלכם ברדיד אלומיניום כך שכל המשטח שלו חלק, כל שכנראה יקרה הוא שהאוכל יישאר קר. רדיד האלומיניום יחזיר חלק גדול מהקרינה ויגן על האוכל מחימום. כתבתי "כנראה", כי לא ניסיתי ואני לא ממליץ לכם לנסות.

לדעתי, מצב זה אינו מומלץ מסיבה נוספת. הגלים אינם נבלעים באוכל ומוחזרים בעוצמות ובזוויות שלא נלקחו בחשבון על ידי המנדסים שתכננו את המכשיר. יכולים להיווצר שדות חזקים במקומות שלא תוכננו לכך ועלולים אולי לגרום להתלקחות. בנוסף, גלים אלה עלולים לגרום לעומס ונזק למקור הגלים. אינני בטוח בדיוק מדוע המקור רגיש להחזרים גדולים מידי, ולא ניסיתי בעצמי. אשמח לשמוע תשובות מלומדות מהקהל.

***

נקודה תחתונה: יש שתי תופעות בעייתיות שנגרמות על ידי מתכות במיקרוגל. האחת, הצטברות מטען ופריקה לדופן, והשניה, החזרות לא צפויות של גלים. כלומר, זה לא שאסור לשים מתכות בפנים, אלא שלא כדאי.

נקודה עוד יותר תחתונה ואף יותר חדה וברורה: אל תשימו מתכות במיקרוגל!

כיצד אוכל לשקול לעצמי את הראש בתקציב מוגבל ומבלי למות

הפעם אני רוצה לגעת בשאלה ישנה נושנה. כזאת שאין לה ולתשובות אליה שום חשיבות אמיתית מלבד להפעיל קצת את הראש.

איך אוכל לקבוע כמה שוקל הראש שלי?

כדי לא להיגרר למחוזות האבסורד והתיאורטיקה המוגזמת, אני אגביל את עצמי לפתרונות מעשיים, כלומר כאלה שאוכל לנסות אותם כבר מחר אצלי בבית. כיוון החשיבה שלי הוא ניסיונאי. חשבתי על העניין בעצמי, נועצתי בגוגל ואספתי את הפתרונות שנראים לי רלוונטיים תחת התנאים המגבילים שהצבתי.

***

ראשית נדחה את הרעיון הראשון שעולה לכולכם לראש: שיטת דאעש. עקרונית אוכל, כמובן, לבקש ממישהו לכרות לי את הראש ולשקול אותו, אך ברור שבאופן מעשי לא אעשה זאת ובכל מקרה לא אוכל לדעת את התשובה כי אמות.

דילמה נוספת היא היכן נגמר הצוואר ורשמית מתחיל הראש. בואו ונניח שכל מי שלמד פיזיולוגיה יודע את התשובה לכך ונמשיך הלאה.

***

השיטה הפשוטה ביותר שאפילו לא מצריכה לקום מהכיסא היא למצוא גישה למאגר מידע של פתולוגים ולברר מהו המשקל הממוצע של ראש. אני חושב שההנחה שמידע כזה קיים היא סבירה. מתוך הנחה שהפיזור במשקל של ראשים של אנשים אינו כה גדול, סביר להניח, לדעתי, שהמשקל הממוצע הוא קירוב לא רע בכלל למשקל הראש שלי. אני אדם די ממוצע.

אם אתם לא מרוצים ורוצים תשובה יותר אישית אתם מוזמנים לטבול את ראשי בדלי מלא במים. מסת המים שנשפכו החוצה היא בקירוב טוב מאוד מסת הראש שלי. הסיבה לכך היא שנפח המים שנדחה אל מחוץ לדלי עקב הטבילה הוא כנפח הראש שטבל, ומסתבר שצפיפות המים היא קירוב לא רע לצפיפות הממוצעת של ראש (הראש אינו הומוגני ועשוי מחומרים שונים).

נוכל לשפר את איכות ההערכה אם תהיה בידינו שיטה לקביעת הצפיפות הממוצעת של הראש בדיוק רב יותר. נתקלתי בקריאה ברשת במספר הצעות הדורשות להקרין את הראש בכל מיני סוגי קרינה ולהסיק מהקרינה החוזרת העוברת או הנבלעת את הצפיפות הממוצעת (בהנחה שכיילנו בעבר את המדידה לחומרים הרלוונטיים). מכיוון שאין סיכוי שהייתי מסכים להפציץ את הראש שלי בקרינת גאמא או בדברים מוזרים יותר, ומכיוון שאין לי גישה למכשירים כאלה בכל מקרה, אני נאלץ לפסול את כל הכיוון הזה של מדידת הצפיפות.

***

כיוון שונה לחלוטין הוא לכאורה פשוט הרבה יותר. אם נשכב ונשעין את ראשינו על המשקל כמו על כרית ונדאג בדרך זאת או אחרת לאפס את הלחצים שמפעיל הצוואר שלנו על הראש נוכל לכאורה לקבל קריאה ישירה של משקל הראש.

לדעתי אין סיכוי להצליח באופן מעשי. אנסה להסביר מדוע.

חישבו על מד כוח כקפיץ תלוי. התכונה המיוחדת של קפיץ היא שבתחום האלסטי שלו הכוח שהוא מפעיל כדי לחזור למצב הרפוי פרופורציוני להתארכות שלו ביחס למצב הרפוי. כלומר, תליית משקולת של 1 ק"ג על קפיץ תגרום לחצי ההתארכות של תליה של משקולת של 2 ק"ג. כיול של התארכות הקפיץ במשקלים ידועים היא למעשה בנייה של מד כוח או מד משקל (לקבלת מסה נחלק בתאוצת הנפילה החופשית).

מה יקרה אם נתלה משקולת מלבנית על שני קפיצים בצורה סימטרית? כל קפיץ יתארך רק בחצי ממה שהיה מתארך לבד. כלומר כל אחד ממדי הכוח מורה רק על חצי ממשקל התיבה. כך שנראה, כביכול, שכל מד כוח מודד בנפרד צד מסוים של התיבה. אך מה יקרה אם נתלה את התיבה מהקפיצים כך ששניהם בצד ימין של התיבה, אחד ליד השני? סביר שהתיבה תיטה בזווית מסוימת וקריאת כל קפיץ תהיה שונה.

מה יקרה למשל אם את אחד מהקפיצים הסימטריים נחליף בחבל שאינו יכול להימתח? מד המשקל הקפיצי נוטה להימתח אבל החבל לא יכול להימתח בצד שלו. נוצר מצב מורכב שבו אני כבר לא בטוח מה יקרה ומה ימדד.

בעיית האיש השוכב עם הראש על משקל היא בעיה זהה שלאלו שתיארתי ולכן אינני חושב שניתן לבצע אותה באופן מעשי. תקנו אותי אם אני טועה.

***

שאר הפתרונות בהם נתקלתי ברשת הם בחלקם מעוררים מחשבה ובחלקם משעשעים אך אינם, למיטב הבנתי, מעשיים כלל.

אם כך, תחת התנאים שאני הצבתי לעצמי עבור הבעיה, נראה כי שתי השיטות המעשיות היחידות הם הערכה לפי המשקל הממוצע של ראשים כרותים של אחרים או הערכה לפי טבילת הראש בדלי. הדיוק לא גבוה, אבל, להבנתי, גם לא רע,

ולמה שמישהו ירצה לדעת כמה שוקל הראש שלו, לכל הרוחות?!

***

מוזמנים להציע פתרונות משלכם.

הנה קישור למה שקורה שנותנים לפיזיקאים להתפרע עם השאלה.

:קטגוריותכללי תגיות: , ,

על דרך מפתיעה לקבל מנמלים גז

הפעם אפתח בחידה. היא אינה חדשה ולא אני חיברתי אותה.

מי שמכיר אותי יודע שאני לא חובב חידות. ובכל זאת, שתי סיבות למה היא כאן: 1) היא מעניינת, לדעתי, גם למי שלא מצליח לפתור אותה, 2) אנסה להראות שניתן להוציא ממנה אפילו יותר ממה שנראה במבט ראשון.

***

החידה פורסמה מזמן על ידי גדי אלכסנדרוביץ' מהבלוג 'לא מדויק' ופורסמה שוב, למיטב זכרוני, לפני שנה-שנתיים על ידו באתר עיתון 'הארץ'.

דמיינו שולחן באורך מטר שעליו צועדות נמלים בקצב של מטר לדקה (הבעיה חד ממדית). כלומר, אם נניח נמלה בקצה השולחן, כאשר פניה מופנות פנימה, היא תיפול מהקצה השני של השולחן לאחר דקה של הליכה. כאשר שתי נמלים נפגשות (ראש בראש) שתיהן הופכות כיוון, כלומר, ממשיכות ללכת במהירות הנתונה, אך בכיוונים הפוכים.

החידה: מספר לא ידוע של נמלים, שראשן מופנה לכיוונים לא ידועים ונמצאות במקומות לא ידועים על השולחן מתחילות את צעידתן. מהו הזמן המינימלי שייקח לכל הנמלים ליפול מהשולחן?

.

.

.

לפני הפתרון בואו וננסה כמה מקרים פשוטים.

עבור נמלה אחת שמתחילה בקצה אנחנו כבר יודעים שהיא תיפול אחרי דקה. זה המקרה הארןך ביותר עבור נמלה בודדת.

נציב שתי נמלים בשני הקצוות עם הפנים פנימה. פגישה במרכז אחרי חצי דקה, סיבוב וצעידה חצי דקה לקצוות עד לנפילה. שוב דקה. אם נמלה אחת בקצה ואחת במרכז מכוונת אליה, גם דקה. בדקו אותי. לא תמצאו מקרה יותר ארוך מדקה. בדקו אותי.

נציב שתי נמלים בקצוות עם הפנים פנימה ואחת במרכז. סה"כ שלוש נמלים. אחרי רבע דקה יש מפגש והיפוך, אחרי חצי דקה נמלה אחת נופלת והשתיים האחרות נפגשות ומתהפכות במרכז, ואחרי דקה כולן נפלו.

מסתמן שהתשובה היא כנראה דקה, ללא תלות במספר הנמלים. אך כיצד להסביר זאת?

נחליף את הנמלים בכדורים זהים אחד לשני. כאשר שני כדורים נפגשים הם מחליפים כיוון ואחד נע ימינה והשני שמאלה. כאשר שני כדורים חולפים אחד דרך השני הם אינם מחליפים כיוון ואחד נע ימינה והשני שמאלה. כלומר, אין הבדל מהותי בין שני המקרים ולכן התוצאות שלהם צריכות להיות זהות. בשני המקרים, לאחר המפגש נצלם שני כדורים זהים שנעים, אחד ימינה ואחד שמאלה.

קל יותר לחשוב על המקרה שבו הכדורים חולפים אחד דרך השני. במקרה זה ברור שזמן התנועה הארוך ביותר הוא של נמלה שמתחילה מהקצה פנימה ונופלת אחרי דקה. כל נמלה אחרת תיפול לפני כן. אמנם 'במציאות' הנמלה שתיפול אחרונה לא תהיה זאת שהיתה בקצה (שככל הנראה תיפול ראשונה), אבל לשם פתרון הבעיה אין לכך משמעות.

יש עוד משהו יפה לטעמי שאפשר להוציא מהחידה זאת והוא דורש מעט מאמץ ומעט מתמטיקה אבל בתמורה הוא יגלה לנו משהו על העולם האמיתי.

***

התראה: עבור מי שאינו מורגל בפיזיקה החלק הבא אולי יהיה מעט מורכב, אך המתמטיקה הנדרשת היא ברמה תיכונית, ולדעתי שווה את המאמץ.

***

דמיינו שוב את אותו השולחן ואותן הנמלים רק שהפעם קצוות השולחן חסומים. כלומר, כאשר נמלה מגיעה לקצה, היא נוגחת בו, מחליפה כיוון וצועדת לכיוון השני במהירות האמורה.

כמה נגיחות יוטחו בקירות בממוצע על פני דקה (כלשהי)?

אם הבנתם את פתרון החידה הקודמת ודאי תסכימו שהפתרון הוא כמספר הנמלים על השולחן. חישבו שוב על הנמלים ככדורים שעוברים אחד דרך השני. ברור שאם כל הנמלים היו נופלות מהשולחן לאחר דקה, במקרה שלנו בממוצע לאורך דקה כלשהי כל אחת תנגח פעם אחת בקיר.

לפי חוק שלישי של ניוטון, נמלה שנוגחת בקיר, דינה להינגח על ידי הקיר בכוח ששווה בגודלו והפוך בכיוונו לכוח נגיחתה. זה גם ברור שכדי שהנמלה תהפוך את כיוון תנועתה הקיר חייב לנגוח בה בעוצמה, כלומר להפעיל עליה כוח.

השינוי בתנועת הנמלה מגולם בפיזיקה בתוך הגודל שנקרא 'תנע' שהוא המהירות כפול המסה. הכוח שפועל לאורך זמן מגולם בגודל שנקרא 'מתקף' שהוא הכוח כפול הזמן (עבור כוח קבוע או כוח ממוצע). מכאן שהשינוי בתנע של הנמלה בעקבות נגיחה בקיר חייב להיות שווה למתקף שהקיר הפעיל עליה. זהו משפט 'מתקף-תנע' והוא נובע ישירות מחוקי ניוטון.

F>·t=Δ(m·v)=m·Δv>

(m מסה, v מהירות, t זמן, F כוח, Δ הפרש כלומר סוף פחות התחלה, <> ממוצע)

אם כן, מהו המתקף הממוצע שפועל על הקיר ביחידת זמן (למשל דקה)? לפי המשפט, זה שווה לשינוי התנע הממוצע של כל הנמלים. שינוי התנע של נמלה בודדת שווה לפעמיים התנע שהיה לה כי היא החליפה כיוון ותנע הוא וקטור (גודל וכיוון), ואת זה נכפיל במספר הנמלים.

F>·t= m·Δv=m·2·v·N>

(N מספר הנמלים)

יחידת הזמן אינה מוגבלת להיות דקה. אוכל לבחור אותה כרצוני. כידוע, זמן שווה דרך חלקי מהירות ולכן נוכל לרשום:

t=L/v

(L אורך השולחן)

F>·t=<F>·L/v =2·m·v·N>

F> =2·m·v2·N/L>

ידוע שהאנרגיה הקינטית, האנרגיה הקשורה בתנועה של חלקיקים, מוגדרת כ:

Ek=0.5·m·v2

ולכן

F> =4· Ek ·N/L>

אם ניקח בחשבון שלמחסומים בקצה השולחן יש שטח פנים שעליו נוגחות הנמלים ונחלק את שני אגפי המשוואה בשטח זה נקבל את הלחץ על דפנות השולחן, שהרי לחץ הוא כוח ליחידת שטח.

F>/S=P =4· Ek ·N/L·S>

(P לחץ, S שטח הדופן)

מכיוון שהשטח כפול האורך שווה לנפח נוכל לרשום:

P·V =4· Ek ·N

(V נפח)

כעת לפינאלה. מי שמכיר כבר היה צריך לחשוד מזמן.

משיקולים תרמודינמיים של מערכות רבות גופים ידוע שהאנרגיה הקינטית הממוצעת של החלקיקים שווה, עד כדי קבוע, לטמפרטורה של המערכת ולכן נוכל לרשום:

P·V =C·N·T

(T טמפרטורה, C קבוע כלשהו)

מה שקיבלנו היא משוואת המצב של גז אידיאלי קלאסי. מודל זה הוא קירוב טוב מאוד לגזים דלילים (שאינם דחוסים, בלחץ נמוך). המשוואה מתארת את הקשרים שחייבים להישמר בין שלושת הגדלים הרלוונטיים למערכת שיכולים להשתנות: הלחץ, הנפח והטמפרטורה.

[הערת שוליים: פתרון הבעיה עבור מרחב תלת ממדי לא ישנה באופן מהותי את התוצאה]

למעוניינים, הנה קישור לדף שבו יש פיתוח יותר סטנדרטי של נוסחת הגז האידיאלי

***

לא רע בשביל כמה נמלים מטופשות שהולכות בסך על שולחן חד ממדי בחידה חסרת פשר. לפחות לדעתי.

:קטגוריותכללי תגיות: ,

כשלון שכולו הצלחה – על הניסיון לשחזר את ניסוי הרץ

בשנים האחרונות אני משתדל לקחת על עצמי בחופשת הקיץ פרויקט מאתגר שחורג מהפעילות היום-יומית. לפעמים התוצאות מעניינות ולפעמים פחות.

***

בשנת 1865, אחרי שנים רבות של מחקר ופיתוח, פרסם ג'יימס קלרק מקסוול את ספרו "תיאוריה דינמית של השדה האלקטרומגנטי". בספר זה סיכם מקסוול את כל הידוע על חשמל ומגנטיות. בנוסף, הוא הציג בספר בצורה סדורה את התיאוריה הכוללת שלו לנושא, שאותה פרסם קודם לכן בשורה של מאמרים.

התיאוריה של מקסוול היתה מהפכנית. היא החליפה את רעיון הפעולה (של כוחות) ממרחק באופן מיידי, התיאוריה השלטת באותה תקופה, בשדות אלקטרומגנטיים מתפתחים בזמן. השדה, מונח אבסטרקטי לחלוטין, הוגדר ללא מודל מכניסטי. התיאוריה היתה כתובה במתמטיקה מסובכת ולא מזמינה, וכך היא נשארה, כרעיון מעניין ותו לא. אחת התחזיות המעניינות של התורה היתה קיומם של גלים אלקטרומגנטיים שנעים במרחב במהירות האור.

בין השנים 1886-1889 ביצע היינריך הרץ סדרה של ניסויים מפורסמים שבהם הוכיח את קיומם של הגלים האלקטרומגנטיים. ניסויים אלה עזרו לקבע את התורה האלקטרומגנטית של מקסוול כתורה הבסיסית של התחום המקובלת על כולם. הרץ בנה מכשיר שמייצר מתח גבוה בין שתי אלקטרודות כך שנוצרת התפרקות חשמלית ביניהן וניצוץ (ברק קטן). האנטנה הנושאת את הניצוץ הפיצה גלים אלקטרומגנטיים בתדר גבוה (סדר גודל של מאות MHz). את הגלים הוא קלט באמצעות אנטנת דיפול, שהיא בעצם מוט מתכת קטוע במרכזו, בדומה לאנטנה המשדרת. קליטת הגל מעלה את המתח החשמלי על האנטנה, ובמתח גבוה מספיק האוויר 'ייפרץ' חשמלית ויוצר ניצוץ בין הקצוות (ראו איור 1).

איור 1: סכימה של מערך הניסוי של הרץ. משמאל, מקור מתח גבוה מסוג רומקורף מחובר לאנטנת דיפול. מימין, אנטנת קליטה מעגלית עם מקטע חסר לקבלת פריצה במתח גבוה. המקור לאיור: ויקיפדיה, לשם הועלה על ידי המשתמש Hertzian.

הרץ עשה עבודה יסודית והראה גם שידור וקליטת של גלי רדיו בפעם הראשונה, גם את קיטוב הגל וגם הציב מראה לגלים, ומתוך מדידת הגל העומד שנוצר, מדד את מהירות האור.

***

בתחילת הקיץ קראתי ספר על התפתחות רעיון השדה האלקטרומגנטי ששם הוזכר, כדרך אגב, הניסוי של הרץ. הניסוי לא נראה מסובך מדי במונחים של היום. גמרתי אומר לשחזר אותו. הצלחתי להלהיב עוד שותף בעל ידע בפיזיקה, זמן פנוי ויכולת טובה משלי לבנות דברים. ההגבלות ששמנו לעצמנו: לנסות ולשחזר את הניסוי ההיסטורי, ככל שניתן, ולנסות לארוז את זה כך שיתאפשר להדגים זאת בנוחות מול קהל. רצינו להיעזר בעבודות קודמות אך לא מצאנו שום תיעוד ברשת של אנשים אחרים ששחזרו ניסוי זה בשנים האחרונות, וזאת למרות השפע ברשת וקלות החיפוש. כאן היינו צריכים לחשוד, אבל היינו נלהבים מידי.

***

להרכבת אנטנת השידור ניסרנו מוט מתכת חלול באורך חצי מטר לשני חלקים שווים. על הקצוות שהופרדו הרכבנו כדורי מתכת והשארנו אותם קרובים מאוד אחד לשני. זאת הצומת עליה תהיה התפרקות חשמלית וניצוץ. חיברנו את שני צידי המוט המופרדים למקור מתח מסוג רומקורף (Ruhmkorff Induction Coil) שהוא סוג של שנאי שמייצר פולסים מחזוריים של מתח גבוה ממקור מתח ישר נמוך. בכל פעם שהמתח בין הכדורים מגיע לערך גבוה מספיק מתרחשת פריצה חשמלית באוויר בין הכדורים, מטענים חשמלים יעברו מצד לצד דרך האוויר, ואנו נראה ניצוץ. בזמן הניצוץ נוצר גל עומד על פני שני חלקי האנטנה. נקודת המקסימום של הזרם נמצאת במרכזה (באזור הפריצה). בגלל הצורה ואורך האנטנה היא אמורה לתפקד כבורר תדרים לגל שנוצר עליה. התדר העיקרי המצופה להיות מופץ במרחב משוער להיות מסדר גודל של 300 מגה-הרץ.

איור 2 +3: מקור מתח גבוה מסוג רומקורף (Ruhmkorff Induction Coil). למעלה – איור של המכשיר. ניתן לראות סליל בתוך סליל לקבלת שנאי. בצד ימין חוטים לחיבור מתח ישר נמוך ומעליהם הויברטור. מעל לסלילים ניתן לראות את המוטות שברווח ביניהם תיווצר ההתפרקות החשמלית. למטה – סכימה של המכשיר. המקור לאיורים: ויקיפדיה וויקיפדיה. האיור העליון לקוח מספר שפורסם ב-1920 על רכיבי רדיו. האיור התחתון הועלה לויקיפדיה על ידי המשתמש PieterJanR ועובד על ידי המשתמש Chetvorno.

לקליטת 'השידור' הצבנו אנטנת קליטה שהמבנה שלה זהה לאנטנת השידור. בין שני הקצוות המנוסרים חיברנו נורת ניאון קטנה שנדלקת כאשר בין הקצוות שלה מתפתח מתח גבוה מ-70 וולט. בניסוי המקורי הרץ השאיר קצוות מנותקים ומחודדים, עליהם הרכיב מיקרוסקופ והשחית את עיניו בחושך מוחלט במשך חודשים ארוכים כדי לבצע את המדידות. במקרה הזה השיקול של נראות מול קהל, והצורך לשמר שפיות, גבר על הרצון לדיוק היסטורי.

***

כפי שכותרת הרשימה כבר חשפה, זה לא עבד.

הצלחנו להדליק את הנורה, אבל רק במרחקים מאוד קצרים. במרחקים אלה היה עלינו הנטל להוכיח שאנחנו מודדים תוצאה של הגלים ולא של פרופיל השדה החשמלי החזק קרוב לאנטנה. כלומר, להראות שאם נרחיק את קצוות האלקטרודות, כך שנשאר עם שדה חזק אבל ללא פריצה (ללא גל), לא נראה הארה. הגבול בין הארה לחוסר הארה היה מאוד קרוב ולא אמין.

אחת ההצלחות היפות הייתה להראות את קיטוב הגל. כאשר האנטנות היו מקבילות אחת לשניה, קיבלו הארה בנורה. כאשר הצבנו את האנטנות בניצב אחת לשניה, ההארה נעלמה.

ישנם שני כיוונים בסיסיים כדי לשפר את המדידה: לשפר את השידור או לשפר את הקליטה. בתחום השידור ניסינו לשפר את תפקוד אנטנת השידור בכמה דרכים גיאומטריות. ניסינו לסנן תדרים לא רצויים על ידי סלילים (חוסמים תדרים נמוכים). בתחום הקליטה ניסינו להשתמש במגבר מתח ישר להגביר את רגישות הנורה (לעבוד יותר קרוב למתח ההפעלה שלה) ושקלנו להחליף אותה במד מטען (קבל ומד מתח עם התנגדות כניסה גבוהה מאוד) כדי למדוד באינטגרציה על פני זמן.

לאחר חודש עבודה (לא רצופה, קצת פה קצת שם, בכל זאת יש גם עבודה שוטפת) הקיץ שלנו נגמר והתוצאות נשארו לא משכנעות. נכנענו לעת עתה.

***

האם בזבזנו את זמננו?

ברור שלא.

קודם כל למדנו צניעות. אני הייתי משוכנע שעם הציוד המודרני שלנו נוכל לשחזר את הניסוי הבסיסי בשבועיים והיו לי תוכניות המשך. בפועל זה לא קרה. מניסיוני, כך עובד גם מחקר מדעי אמיתי. אם ניסויים היו קלים לביצוע, משהו אחר כבר היה מבצע אותם. בין הפרסומים על הצלחות יש בעיקר המון כישלונות. החוקרים המובילים הם אלו שמספיק מוכשרים כדי להצליח, ומספיק איתנים נפשית כדי להתמודד עם הכישלונות, יום אחרי יום.

למדנו קצת תיאורית אנטנות שבה שנינו לא היינו בקיאים כלל. למדנו איך בונים מד מטען ברמת הרכיבים על הלוח. מצאנו עניין רב בעבודת המחקר ובנושא עצמו, קראנו ספרים ומאמרים והתייעצנו עם מומחים.

במדד פיתוח מוצר 'מוכן לשיווק' נכשלנו כליל, אך במדד העניין והלמידה, הצלחנו מעל ומעבר, ועבורנו זה היה מספיק טוב.