ראשי > כללי > רק פוני אחד לטריק – על מימוש שערים לוגיים

רק פוני אחד לטריק – על מימוש שערים לוגיים

בשתי רשימות קודמות סיפרתי על האלגברה הבוליאנית ועל איך ניתן לעשות בה שימוש באלקטרוניקה דיגיטלית. ערכי המשתנים באלגברה בוליאנית, 'שקר' או 'אמת', 'אפס' או 'אחד', מתורגמים באלקטרוניקה למתח גבוה או מתח נמוך. בעזרת הפעולות הבוליאניות 'וגם' ו-'או' ניתן לתכנן מעגל שיקבל החלטות נכונות לפי חוקים ידועים מראש, למשל ידליק נורה אך ורק אם התנאים הנכונים מתקיימים.

הפעם אני רוצה לספר על איך זה קורה באמת. כיצד ניתן לממש את השערים הלוגיים, כלומר את הפעולות 'וגם' ו-'או' ופעולות נוספות.

***

הרכיב הבסיסי שעומד מאחורי כל השערים הלוגיים 'בעולם האמיתי' הוא המתג.

חישבו על מתג כעל ברז במרכז צינור מים. בהנחה שאני דוחף בלחץ מים דרך הצינור, המים נשפכים החוצה אם הברז פתוח ולא נשפכים אם הברז סגור. המתג עובד באופן דומה. אם המתג פתוח, זרם חשמלי יעבור דרכו ללא הפרעה ואם הוא סגור הזרם אינו עובר. בעגה נאמר שבאופן אידיאלי כאשר המתג פתוח הרכיב הוא 'קצר' במעגל וכאשר הוא סגור הרכיב הוא 'נתק' במעגל.

ישנן מספר דרכים לבנות מתג עבור מעגלים חשמליים בזרם נמוך (למשל בשבבים למחשבים). בעבר היו משתמשים בשפופרות ואקום והיום אנחנו משתמשים בטרנזיסטורים שהם רכיבים שבנויים מחומרים שנקראים 'מוליכים למחצה' ועל המצאתם הוענק פרס נובל בפיזיקה בשנת 1956.

כדי לא להאריך היכן שיש לקצר ולא לקצר היכן שיש להאריך לא אעסוק ברשימה זאת בבפנוכו של הטרנזיסטור. אני רק אציין שלרכיב יש שלושה טרמינלים, כלומר שלוש נקודות חיבור למעגל. נקודה אחת נקראת 'gate' והיא הברז. שתי הנקודות האחרות נקראות 'source' ו-'drain' והן שני צדדי הצינור. מתח מתאים בחיבור ה-gate יפתח את הרכיב לזרם חשמלי.

מכאן ואילך אני פשוט אניח שיש ברשותי את הרכיב הדרוש.

FET איור 1: סימון במעגל חשמלי לטרנזיסטור. G מסמן את כניסת ה-Gate, S את כניסת ה-Source ו-D את כניסת ה-Drain. אם נחבר מתח חשמלי בין S ל-D ונדאג למתח ב-G שמספיק לפתיחתו של הטרנזיסטור אז זרם חשמלי יזרום מ-S ל-D.

***

כעת, כשיש לנו את אבן הבסיס, המתג, נשתמש בו כדי לממש את השער הפשוט ביותר: 'המהפך' (inverter). ברשימה הקודמת הראיתי שבתכנון המעגלים הדיגיטליים יש צורך ברכיב שהופך גבוה לנמוך ונמוך לגבוה. השער הלוגי הזה גורם להיפוך של האות החשמלי ומכאן שמו.

כיצד, אם כן, נשתמש במתג כדי לקבל מהפך? נבחן את החיבור הבא:

מהפך NMOS איור 2: מעגל מהפך. המקור לאיור: ויקיפדיה (עם תוספות שלי), לשם הועלה על יד המשתמש Fresheneesz.

כאשר המתח גבוה ב-gate של הטרנזיסטור הוא פתוח ולכן מהווה קצר, כלומר אפשר להחליף אותו בחוט מתכת. אם כן, המתח בנקודת היציאה מוכתב ישירות על ידי נקודת ההארקה שהיא בהגדרה אפס. כלומר, נכנס גבוה יוצא נמוך. לחלופין, אם מתח הכניסה נמוך אז הטרנזיסטור סגור ולכן אין זרם. כתוצאה מכך אין נפילת מתח על הנגד וניתן להחליף את הטרנזיסטור בחוט מנותק. המתח ביציאה מוכתב כעת על ידי מקור המתח העליון שערכו הלוגי הוא '1'. כלומר, נכנס נמוך יצא גבוה.

אז יש לנו מהפך.

לפני שאני עובר הלאה, אני אתעכב מעט כדי להצביע על בעיה פרקטית במהפך הזה ועל פתרון אפשרי. נניח שבאופן ממוצע בחצי מזמן פעולתו של המעגל נכנס למהפך אות גבוה ולכן הטרנזיסטור פתוח. כתוצאה, בחצי מהזמן זורם זרם במעגל דרך הנגד כך שנשלם לחברת החשמל על חימום. זאת תוצאת לוואי מאוד לא רצויה מכיוון שישנם מעגלים שבהם יש מיליוני טרנזיסטורים, ונהיה שם חם. מאוד.

בואו ונניח שיש טרנזיסטור מאוד דומה לזה שהוצג, אך הוא עובד הפוך. הוא נפתח רק אם מתח ה-gate שלו נמוך. נסמן אותו בסימון דומה אך עם נקודה ב-gate. נבחן את החיבור הבא:

מהפך CMOS איור 3: מעגל מהפך בטכנולוגית CMOS. המקור לאיור: ויקיפדיה (עם תוספות שלי), לשם הועלה על ידי המשתמש inductiveload.

מתח גבוה יגרום לפתיחת הטרנזיסטור התחתון וסגירת העליון, כך שהיציאה נמוכה. מתח נמוך יגרום לפתיחת הטרנזיסטור העליון וסגירת התחתון ולכן היציאה גבוהה. היתרון במעגל זה הוא שברוב זמן פעולתו לא זורם בו זרם, בזבוז ההספק עליו נמוך באופן משמעותי ולכן הוא מתחמם פחות. החיסרון הוא שיש בו צורך בעוד טרנזיסטור ובעוד שטח על גבי המעגל המודפס, וזה עולה כסף. צורת המהפך הזאת היא חלק מטכנולוגיה בסיסית של מעגלים שנקראת CMOS.

***

בואו וננסה שער יותר מורכב.

ה-'nand' הוא שער שמורכב מ-'וגם' שאחריו מהפך (not-and). טבלת האמת שלו היא:

טבלת אמת של שער nand

נבחן את המעגל הבא:

NMOS NAND איור 4: מעגל nand. המקור לאיור: ויקיפדיה (עם תוספות שלי), לשם הועלה על יד המשתמש Fresheneesz.

נבחין שזרם במעגל יזרום רק אם שני המתגים פתוחים ובמקרה הזה היציאה נקבעת על ידי ההארקה, כלומר יציאה נמוכה. כל מקרה אחר נקבל יציאה גבוהה וזה בדיוק מה שנדרש לפי הטבלה.

ניתן לממש את ה-nand, כמובן, גם בטכנולוגית CMOS. אני ממליץ לכם לנסות לשרטט את הפתרון בעצמכם.

אז יש לנו nand.

וזהו, סיימנו.

מה? למה?

***

להלן שלושה תרגילים קצרים באלגברה בוליאנית. מי שלא מכיר או לא זוכר יכול לעיין ברשימה קודמת בנושא.

Functional completeness

התרגיל הראשון מראה שניתן ליצר מהפך משער nand. התרגיל השני מראה שניתן לייצר שער 'וגם' באמצעות שערי nand ומהפך. התרגיל השלישי מראה שניתן לייצר שער 'או' באמצעות שער nand ושני מהפכים.

מסקנה: ניתן לממש את כל השערים הלוגיים באמצעות צירופים של שערי nand בלבד.

זה נקרא בעגה Functional completeness.

היתרון: צריך רק פוני אחד לטריק, רק חותמת אחת, רק ראש אחד במדפסת וכולי.

החיסרון: יש צורך בהרבה יותר טרנזיסטורים.

סוף.

מודעות פרסומת
  1. עדיין אין תגובות.
  1. No trackbacks yet.

כתיבת תגובה

הזינו את פרטיכם בטופס, או לחצו על אחד מהאייקונים כדי להשתמש בחשבון קיים:

הלוגו של WordPress.com

אתה מגיב באמצעות חשבון WordPress.com שלך. לצאת מהמערכת / לשנות )

תמונת Twitter

אתה מגיב באמצעות חשבון Twitter שלך. לצאת מהמערכת / לשנות )

תמונת Facebook

אתה מגיב באמצעות חשבון Facebook שלך. לצאת מהמערכת / לשנות )

תמונת גוגל פלוס

אתה מגיב באמצעות חשבון Google+ שלך. לצאת מהמערכת / לשנות )

מתחבר ל-%s

%d בלוגרים אהבו את זה: