ראשי > כללי > אפילו שימפנזה – על פתרון מעגלים חשמליים באמצעות מטריצות

אפילו שימפנזה – על פתרון מעגלים חשמליים באמצעות מטריצות

ברשימה הקודמת נתקלנו במושג 'מטריצה'. ראינו שניתן להציג מערכת משוואות ליניאריות באמצעות מטריצות ולהשתמש בתכונות המטריצה כדי למצוא את הפתרונות עבור הנעלמים. מה שלא ראינו זה איך זה עוזר לנו לשלם במכולת.

***

איור 1 הוא ייצוג סכמטי של מעגל חשמלי. ישנו מקור מתח חשמלי V, וחוטים מוליכים דרכם עובר זרם חשמלי I מהמקור לצרכן ומהצרכן למקור. הצרכן מסומן כנגד, שעליו מתקיים 'חוק אוהם', כלומר שיש יחס ישר בין המתח עליו לבין הזרם דרכו, וקבוע הפרופורציה הוא ההתנגדות החשמלית שמסומנת ב-R. הבחירה בצרכן כנגד אוהמי היא רק לשם פשטות. הצרכן יכול להיות כל מכשיר חשמלי או מעגל שתחברו לספק המתח, למשל טוסטר משולשים. את הזרם על הנגד נוכל לחשב על ידי הצבת מתח הספק וההתנגדות של הנגד לתוך חוק אוהם (I=V/R).

מעגל 1 איור 1: צרכן\נגד מחובר למקור מתח חשמלי וזרם חשמלי זורם במעגל. אם נניח נגד אוהמי נוכל להשתמש בחוק אוהם לחישוב הזרם.

חישבו על המעגל כעל מפל מים. בהדק החיובי של הספק יש מים במאגר גבוה, כלומר בחלק העליון של המפל. כוח הכובד גורם למים ליפול לגובה נמוך יותר ותוך כדי כך אנחנו יכולים להפיק מכך עבודה, למשל לסובב גלגל של תחנת קמח או טורבינה בתחנת כוח. אותו דבר קורה על הנגד שיכול להיות למשל סלילי החימום בטוסטר משולשים. נושאי המטען הגיעו לנגד באנרגיה פוטנציאלית גבוהה, ויצאו באנרגיה פוטנציאלית נמוכה, תוך יצירת חום. את המים בתחתית המפל ניתן לשאוב חזרה אל חלקו העליון. זה בדיוק מה שעושה ספק המתח מההדק השלילי לחיובי.

חשוב לשים לב שאם עוקבים אחרי מסלול סגור, גם במקרה של המים וגם במקרה החשמלי, ומחברים עליות וירידות באנרגיה צריכים לקבל סה"כ אפס מכיוון שהאנרגיה נשמרת (בעגה: כוח הכבידה והכוח החשמלי הם כוחות משמרים).

עד כאן הכל פשוט.

***

איור 2 הוא גם ייצוג סכמטי של מעגל חשמלי, אבל מאיים מעט יותר. השאלה כאן היא מהו הזרם על נגד R3. הבעיה היא שהפעם לא נוכל להשתמש בחוק אוהם כמו במעגל הקודם מכיוון שהנגד לא מחובר ישירות לספק המתח ולכן אין אנו יודעים מה המתח עליו ומה הזרם עליו. חלק מהמתח 'נפל' על נגד R1, ולכן המתח על R2 ו-R3 לא ידוע.

מעגל 2 איור 2: מעגל חשמלי עם שני חוגים. המתח על נגד R3 אינו ידוע ללא חישוב. I1 ו-I2 אינם הזרמים האמיתיים במעגל אלא זרמי החוגים שהם משתני עזר בדרך לפתרון הבעיה.

מי שלמד מעט אלקטרוניקה יודע שיש מספר שיטות פשוטות כדי לחשב את התשובה (לדוגמה חישוב התנגדות שקולה או שימוש בחוקי קירכהוף). הבעיה היא ששיטות אלה מסתבכות מאוד ככל שנסבך את המעגל וגם אינן מותאמות באופן מיטבי לפתרון באמצעות מחשב.

בכוונתי להציג שיטה אחרת שתראה בתחילה מסובכת הרבה יותר אבל ברגע שנבין אותה היא תהיה כל כך פשוטה, כך שאפילו שימפנזה יוכל לפתור כל מעגל, מסובך ככל שיהיה. חשוב מכך, השיטה לפעמים לא תהיה הכי נוחה לפתרון עבור אדם, אך היא מותאמת בצורה מושלמת לפתרון על ידי מחשב.

נזכר שבמסלול סגור סה"כ עליות ונפילות המתח צריכות להסתכם לאפס. נבחר שני מסלולים סגורים כאלה (מתוך שלושה אפשריים) ונכתוב עבור כל אחד משוואה (ראו איור 2). ספק המתח מעלה את המתח (מעלה את המים) ונגד מוריד אותו (מפיל את המים).

1

כעת נשתמש בסוג של טריק ונגדיר משתני עזר לבעיה. נגדיר זרם בכל חוג (I1 ו-I2 באיור 2). הזרמים האלה אינם אמיתיים כי הרי ברור שהזרם שונה בענפים שונים עקב פיצול בנקודת הצומת. אבל אנחנו נגדיר אותם כך בכל זאת.

נשתמש בחוק אוהם כדי להמיר את המתחים במשוואה לזרמים והתנגדויות. נשים לב שדרך נגד R2 עוברים שני הזרמים I1 ו-I2, ובכיוונים שונים ולכן ההשפעה של I2 על R2 היא של עליית מתח ולא נפילה.

2

נלוש מעט את המשוואות ונסדר אותן בצורה יותר נוחה:

3

הגענו לסט של שתי משוואות בשני נעלמים (הזרמים). ברשימה הקודמת ראינו איך לפתור את הבעיה בעזרת מטריצות. ראשית נרשום את המשוואות בצורה מטריצית:

4
*[הערת שוליים: מי שלא מתעניין במתמטיקה או בפתרון יכול לדלג בנקודה זאת ישירות לחלק הבא. היו סמוכים ובטוחים שהשיטה תניב פתרון נכון].*

נשתמש במטריצה ההופכית כדי למצוא את הפתרון:

5

R-1 היא המטריצה ההופכית של המטריצה R. ברשימה הקודמת הגדרנו מטריצה הופכית וראינו איך לחשב אותה. התשובה היא:

6

נשתמש בחוקי הכפל של מטריצות כדי להגיע לפתרון עבור הזרם שמעניין אותנו:

7

תם ונשלם. זרם החוג I2 הוא אולי לא זרם אמיתי אבל על R3 הוא בדיוק הזרם שאנחנו מחפשים. אם היינו מחפשים את הזרם על הנגד R2 היינו פשוט מחשבים לפי I1-I2.

***

אז מדוע הטרחתי אתכם עם הדרך הארוכה והמסובכת הזאת? אדגיש שוב שישנן דרכים פשוטות הרבה יותר לפתרון המעגל שמופיע באיור 2.

ברשותכם נחפור מעט לתוך המשוואה הראשונית בצורתה המטריצית. התבוננו במשוואה, האם אתם מבחינים בחוקיות כלשהי?

8

איברי האלכסון הראשי של מטריצה R הם סך כל ההתנגדויות על כל חוג. האיברים מחוץ לאלכסון הם ההתנגדויות המשותפות לשני החוגים בסימן מינוס (כל עוד זרמי החוגים בכיוונים הפוכים). כל איבר במטריצת המתחים הוא סך כל מקורות המתח בחוג הרלוונטי.

למעשה יכולנו לכתוב את המטריצה לפי החוקיות הזאת באופן אוטומטי ללא צורך בכתיבת משוואות. החוקיות נשמרת גם אם נזדקק למספר גדול יותר של חוגים ולמטריצות מסדר גבוה יותר.

שיטה זאת נקראת 'זרמי חוגים' (Mesh current) ובאמצעותה ניתן לפתור כל מעגל מהצורה שהצגתי כאן בלי לבצע שום ניתוח ולמעשה ללא צורך להפעיל את המוח, גם במקרה של מעגלים סבוכים שבהם מספר רב של נגדים ומקורות מתח. ניסחנו אלגוריתם שמוביל למטריצה ולחישוב שאותו מבצע המחשב. אנחנו יכולים לנוח!

כעת, בזמן שהמחשב מחשב עבורנו, יש לנו זמן ללכת לעבוד (אולי בתכנון מעגלים חשמליים), להרוויח מלא כסף, וללכת לקנות איתו במכולת.

מסקנה: עם מטריצות אפשר לקנות במכולת.

מ.ש.ל

מודעות פרסומת

כתיבת תגובה

הזינו את פרטיכם בטופס, או לחצו על אחד מהאייקונים כדי להשתמש בחשבון קיים:

הלוגו של WordPress.com

אתה מגיב באמצעות חשבון WordPress.com שלך. לצאת מהמערכת / לשנות )

תמונת Twitter

אתה מגיב באמצעות חשבון Twitter שלך. לצאת מהמערכת / לשנות )

תמונת Facebook

אתה מגיב באמצעות חשבון Facebook שלך. לצאת מהמערכת / לשנות )

תמונת גוגל פלוס

אתה מגיב באמצעות חשבון Google+ שלך. לצאת מהמערכת / לשנות )

מתחבר ל-%s

%d בלוגרים אהבו את זה: