ארכיון

Archive for אוקטובר, 2014

האם ה-DNA הוא באמת החומר הגנטי? חלק א' – הדברים שאפשר ללמוד מדלקת ריאות

כל ילד בן יומו יודע שהמידע הגנטי נמצא בכל תא בגופנו בצורת סליל כפול של חומצה דאוקסיריבונוקלאית, או בשמה המקוצר DNA. אותו ילד יודע כל גם יודע שהסליל עצמו מורכב מארבע אבני בסיס בלבד המחוברות זו לזו בסדר משתנה כמו טבעות המרכיבות שרשרת. שמקטע DNA המכיל הוראות ליצירת חלבון נקרא גן. ושהחלבונים הם בו-זמנית חומרי הבניה המרכיבים את התאים וגם כלי העבודה בתוכם. אבל חלק גדול ממה שיודע הילד הזה, לא ידעו טובי המדענים עד ממש לא מזמן.

בתחילת המאה ה-20 קיומן של מולקולות ה-DNA והחלבונים, שתיים מאבני הבסיס של החיים, היה ידוע. גם הגנטיקה היתה רעיון מבוסס. אבל המדיום דרכו עובר המידע הגנטי מהורים לצאצאים לא היה ברור כלל. למרות שה-DNA היה מתמודד מכובד לתפקיד, המועמדים המועדפים היו דווקא החלבונים. הם מורכבים ממספר רב יותר של אבני בסיס בהשוואה ל-DNA (עשרים חומצות אמינו), הם בעלי צורה מורכבת וחלקם יודעים לגרום לדברים לקרות (אנזימים). מולקולת ה-DNA נראתה אז פשוטה מידי, חוט ארוך וחסר תועלת שלא סביר שיוכל להכיל את כל המידע על מורכבות החיים.

הוודאות של היום היא תוצאה של סדרת ניסויים מעניינים שהביאו את הקהילה המדעית, עקב בצד אגודל, להבנה שדווקא ה-DNA 'הפשוט' הוא זה שמכיל את הקוד הגנטי.

Pneumococcus_CDC_PHIL_ID1003
תמונה 1: חיידקים מסוג סטרפטוקוק פנאומוניה בתוך נוזל שדרה (spinal fluid) שנצבעו באופן דיגיטלי. המקור לתמונה: Centers for Disease Control and Prevention's (CDC) Public Health Image Library, דרך ויקיפדיה.

***

דלקת ריאות היא מחלה זיהומית שחוללה שמות במין האנושי לפני המצאת החיסונים והאנטיביוטיקה. ישנם מיקרואורגניזמים רבים שעלולים לגרום להתפתחות של דלקת בריאות. סטרפטוקוק פנאומוניה (הקרוי גם פנאומוקוק, ראו תמונה 1) הוא חיידק שאחראי לחלק ניכר מהדלקות הקטלניות בריאות. לחיידק זה יש כמה זנים, כאשר הזנים הקטלניים יודעים 'להערים' על מערכת החיסון ולכן גורמים לזיהום ולמוות.

פרדריק גריפית' (Griffith) היה בקטריולוג בריטי שחקר את המחלה. הוא שם לב שבמקרים רבים של התפרצותה היו נוכחים זנים שונים של החיידק. הוא בודד זן אחד קטלני שכאשר הוזרק לעכבר גרם למותו, וזן אחר שהזרקתו לא גרמה למוות. גריפית' גילה גם שכאשר המית חיידקים קטלניים בחום והזריק אותם לעכברים, הם לא גרמו למוות. לעומת זאת, הזרקה של חיידקים קטלניים מומתים וחיידקים לא קטלניים יחדיו כן גרמה למוות (ראו איור 2). בנוסף, ניתן היה לבודד מהעכברים המתים גם חיידקים חיים מהזן הקטלני וגם חיידקים חיים מהזן הלא קטלני. איך הגיעו לשם חיידקים חיים מהזן הקטלני? המסקנה הייתה שחיידקים לא קטלניים הפכו בדרך זאת או אחרת לחיידקים קטלניים. רעיון זה לא עלה בקנה אחד עם הדעה הרווחת על חיידקים באותם ימים.

ניסוי גריפית

איור 2: הניסוי של גריפית'. שלבי הניסוי מוצגים באופן סכמטי משמאל לימין. הזרקת חיידקים מזן לא קטלני או חיידקים מומתים מזן קטלני לא גרמה למות העכבר. הזרקת תערובת של שניהם גרמה לזיהום ולמוות של העכבר. המקור לאיור: ויקיפדיה, לשם הועלה על ידי המשתמשת Madeleine Price Ball.

כמה שנים לאחר מכן מצאו חוקרים שתהליך השינוי של חיידקים לא קטלניים לקטלניים לא מצריך עכבר. ערבוב על מצע גידול של חיידקים קטלניים מומתים וחיידקים לא קטלניים חיים הוביל להופעת חיידקים מומתים חיים. אבל אפילו חיידקים קטלניים מומתים לא היו הכרחיים. נמצא שהיה אפשר להסתפק בבפנוכו שלהם כדי לגרום לתהליך השינוי לקרות. המסקנה הייתה שהבפנוכו של החיידקים הקטלניים הכיל גורם טרנספורמציה כלשהו שזהותו לא הייתה ידועה וביכולתו לגרום לשינוי באופי החיידקים.

הניסוי של גריפית' שפורסם ב-1928, הוא הראשון שהראה מעבר של מידע גנטי בין חיידקים, פעולה שמכונה היום בעגה 'טרנספורמציה' ומתארת מצב שבו תא (במקרה הזה חיידק) סופח אליו חומר גנטי מהסביבה. כיום הטכניקה הזאת היא כלי בסיסי בתחום ההנדסה הגנטית.

אבל מהו החומר שעבר בין החיידקים?

***

השנים חלפו מאז הניסוי של גריפית', משבר כלכלי גדול אחד ומלחמה עולמית עקובה מדם היתה בעיצומה. חוקר אמריקאי בשם אוסוולד אוורי (Avery) ושותפיו קולין מקלאוד ומקלין מקרת'י החליטו לחזור לניסוי הזה שוב ולבדוק מהו החומר שדרכו עובר המידע הגנטי במהלך טרנספורמציה.

הצעד הראשון היה לבודד את גורם הטרנספורמציה מתוך החיידקים הקטלניים המומתים. אוורי ושותפיו זיקקו מהבפנוכו של תאים קטלניים מומתים רק את המינימום שהיה נחוץ לעורר את תהליך הטרנפורמציה תחת התנאים המתאימים בתאים לא קטלניים. כיום אנחנו יודעים שהם בודדו DNA וזה הליך בסיסי בכל מעבדה, אבל בשנים ההם זה היה תהליך חדשני וקשה מאוד שעל פיתוחו וזיקוקו הם עבדו במשך שנים. למעשה, חלק גדול מהמאמר שהם פרסמו עסק בתהליך עצמו. אוורי ושותפיו זיקקו גם רכיבים אחרים מהבפנוכו של התאים הקטלניים, כגון חלבונים, אבל אלה לא גרמו לתהליך טרספורמציה.

את גורם הטרספורמציה המופק הם הוסיפו לתרבית של חיידקים לא קטלניים, נתנו להם להתרועע לזמן מה ואז זרעו את התערובת על מצע גידול. חלק ממושבות התאים שגדלו היו מהסוג הקטלני, כלומר התרחשה טרנספורמציה (ראו איור 3 א'-ד'). החיידקים הקטלניים החדשים שמרו על תכונותיהם גם בדורות הבאים, כלומר השינוי היה גנטי וקבוע.

ניסוי אוורי 2 איור 3: ניסוי אוורי-מקלאוד-מקרת'י. א) ממיתים חיידקים קטלניים בחום. ב) מפיקים מהבפנוכו שלהם את גורם הטרנספורמציה. ג) מוסיפים את גורם הטרנספורמציה לחיידקים לא קטלניים. ד) זורעים על מצע גידול את התערובת. אם התרחשה טרנספורמציה, נגלה מושבות חיידקים קטלניים. ה) מטפלים בגורם הטרנספורמציה באמצעות אנזימים מפרקים. האם עדיין תתרחש טרנספורמציה?

מכיוון שתהליך הזיקוק של DNA היה חדש ולא היה מושלם, התוצר הכיל זיהומים, כלומר חומרים שאינם DNA. מהסיבה הזאת ביצעו אוורי ושותפיו ניסויים נוספים כדי לחזק את מסקנותיהם. בין היתר הם ביצעו אנליזות כימיות לגורם הטרנספורמציה המזוקק והראו שהרכבו הכימי זהה להרכב DNA. בנוסף, הם השתמשו באנזימים כדי לפרק רכיבים מסוימים בגורם הטרנספורמציה שהפיקו. שימוש באנזימים שמפרקים חלבונים לא גרם לשינוי ביכולתו של החומר לעורר טרנספורמציה. שימוש באנזימים שמפרקים DNA, לעומת זאת, הוביל לאיבוד היכולת של הגורם לעורר טרנספורמציה.

גיים, סט אנד מץ'?

הלוגיקה בניסוי אווריאיור 4: ההיגיון שמאחורי שימוש באנזימים על גורם הטרנספורמציה. אתם יכולים כבר לנחש את התוצאות. ניסוי 1 הראה מושבות וניסוי 2 לא הראה מושבות, כלומר החומר שעובר בטרנספורמציה הוא DNA.

***

אוורי ושותפיו פרסמו את התוצאות ב-1944 והיו זהירים מאוד. מה שהם דיווחו הוא שהתוצאות שלהם מראות שה-DNA הוא החומר שעובר בזמן טרנספורמציה. מסקנה זאת אמנם אומצה על ידי חלק גדול מהקהילה המדעית, אך הרעיון של DNA כנושא החומר הגנטי היה סיפור שונה לחלוטין.

אנשי המדע הם עם קשה עורף, אך הזרע נזרע ותוך כמה שנים פלוס ניסוי אחד חזק ה-DNA יתקבל לתפקיד. לשם כך יעלה הצורך בבלנדר, ובעוד כמה דברים, אבל על כך אספר ברשימה הבאה.

———————————————————

לקריאה נוספת:

לפענח את ספר החיים – מאמר רחב יריעה, נוח לקריאה וכתוב היטב של יונת אשחר ונעם לויתן למגזין גלילאו על סיפורו המלא של ה-DNA. המאמר מניח את הניסויים שתוארו ברשימה זאת בהקשר רחב יותר. הוא עושה עוד הרבה דברים אחרים.

להדליק סיגריה בסיגריה – על כיול התרמומטר 'הראשון'

אחד ממכשירי המדידה הפשוטים ביותר שקיימים הוא מד-החום שאבות-אבותינו החלו בונים כבר במאה ה-18. אותה טיפת כספית המטפסת לאורכו של צינור זכוכית דק ככל שהטמפרטורה גבוהה יותר.

שאלה: אם תבנו תרמומטר בעצמכם, איך תדעו שהוא תקין, כלומר מציג את הטמפרטורה הנכונה? ודאי תבדקו את קריאותיו אל מול תרמומטר אחר שקניתם בחנות. ומה עשו המדענים שהמציאו את התרמומטר?

הרשו לי להציג בפניכם מספר בעיות בכיול תרמומטר שיגרמו לכם להרים גבה, ואף יותר מזה. מדובר בעסק סבוך הרבה יותר ממה שנראה במבט ראשון, ואפשר ללמוד מכך לא מעט על מדע המדידה.

Mercury_Thermometer

תמונה 1: תרמומטר כספית למדידת הטמפרטורה בחדר במעלות צלזיוס. המקור לתמונה: ויקיפדיה, לשם הועלתה על ידי המשתמש Anonimski.

***

הוראות הרכבה

נתחיל מהרעיון העומד מאחורי מכשיר המדידה שנקרא תרמומטר.

איננו יכולים למדוד טמפרטורה באופן ישיר, ולכן נמדוד אותה באופן עקיף על ידי מדידת תופעה אחרת שקשורה אליה. במקרה של תרמומטר כספית (או אלכוהול) אנחנו מנצלים את העובדה שנוזל משנה את נפחו כתוצאה משינוי בטמפרטורה. נשתמש בטיפה קטנה כך שהטמפרטורה שלה תמיד משתווה לזאת של הסביבה שבאה איתה במגע. נשים אותה בתחתית צינור זכוכית דקיק כך שככל שטמפרטורת הנוזל גבוהה יותר, כך הנפח שלו גדל והגובה של הנוזל בצינור עולה. הדקיקות של הצינור גורמת לרגישות גבוהה יותר לשינויים בנפח.

כעת, כל שעלינו לעשות כדי לבנות תרמומטר הוא לבחור נוזל, לקבוע שתי נקודות ייחוס, למשל נקודת הקיפאון ונקודת הרתיחה של מים, למדוד אותן ולסמן את התוצאות על הצינור. נוכל באופן שרירותי לבחור לסמן ב-0 את נקודת הקיפאון וב-100 את נקודת הרתיחה. בין שתי הנקודות המסומנות נשרטט סדרה של קווים במרחקים שווים, עדיף בסקלה עשרונית כלשהי וזהו. אנחנו מסודרים.

האמנם?

Clinical_thermometer_38.7
תמונה 2: תרמומטר כספית לשימוש רפואי מראה טמפרטורה של 38.7 מעלות צלזיוס. המקור לתמונה: ויקיפדיה, לשם הועלתה על ידי המשתמש Menchi.

***

האם הנקודות הקבועות קבועות?

איך נוכל לדעת האם הנקודות הקבועות שבחרנו אכן קבועות? מי בכלל אמר שמים רותחים תמיד באותה טמפרטורה? כדי להוכיח את הטענה נרצה למדוד את טמפרטורת הרתיחה. אבל אין לנו תרמומטר!

[במאמר מוסגר אני אעיר שנקודת הרתיחה, במובן מסוים, היא באמת לא קבועה ותלויה בלחץ שבו נמצא הנוזל. כמו כן, ישנם גורמים נוספים שעלולים להוביל לתופעות כגון חימום וקירור יתר. נקודה זאת גרמה לקושי ולמחלוקות רבות בין המדענים בסוף המאה ה-18 ותחילת המאה ה-19 שחקרו ובנו מדי-חום, ונושא היסטורי-מדעי זה ראוי לרשימה נפרדת. עם זאת, נוכל להחליט בינינו על רמת לחץ סטנדרטית ועם הידע שיש לנו כיום נוכל בקלות לנטרל את התופעות שהזכרתי, ולכן נצפה למדוד טמפרטורת רתיחה קבועה, וזה מה שאני אניח מכאן והלאה.]

אז איך מוכיחים שהנקודות קבועות ללא תרמומטר? ראשית יש להסכים על מכשיר מדידה. נתחיל מהגוף שלנו. אם נכניס את יד ימין לדלי עם מים חמים מאוד ואת יד שמאל לדלי עם מים קרים מאוד, גופנו יתריע על ההבדל. ניקח את טיפת הכספית הסגורה בצינור הזכוכית הדק, נטבול אותה פעם בדלי החם ופעם בדלי הקר, ונבחין בשינוי בגובה הכספית (ללא סקלה). כך נשתכנע ש-'חם' משמעו עליה ו-'קר' משמעו ירידה בקריאת המכשיר, ומכאן אנחנו שמים את מבטחנו בו. כעת נוכל לבדוק האם מי קרח גורמים לכספית להגיע תמיד לאותו הגובה. אין אנו יודעים מה הגובה הזה בדיוק אומר, אבל אנחנו רואים שהתופעה קבועה. אז נראה שהסתדרנו.

נחזור על ניסוי הדליים בשינוי קל. לאחר טבילת הידיים בדלי החם והקר נעביר אותן, בו זמנית, ימין ושמאל, לשני דליים אחרים עם מים פושרים מהברז. כפי שאתם ודאי יודעים, היד הקרה תדווח שהמים חמים והיד החמה שהם קרים. מכיוון שאנחנו יודעים שהמים הגיעו מאותו מקום, הדיווח לא נשמע אמין ולכן נשתמש במכשיר המדידה שיחשוף את הטעות ויראה גובה זהה של כספית בשני הדליים.

אך שימו לב מה קרה כאן: התחושה של גופנו שכנעה אותנו בתקפותו של מכשיר המדידה ששכנע אותנו בחוסר תקפותה של התחושה של גופנו. האם התרמומטר נשען על טיעון מעגלי?

Thermometer_CF
איור 3: השוואה בין סקלת מעלות צלזיוס לפרנהייט, כולל סימון נקודות הרתיחה והקיפאון של מים. המקור לאיור: ויקיפדיה, לשם הועלה על ידי המשתמש User:Gringer.

***

האם לסקלה יש בכלל משמעות?

כעת שיש בידינו מכשיר מדידה עם שתי נקודות קבועות, 0 עבור קיפאון ו-100 עבור רתיחה, נוכל לשרטט ביניהן סרגל. אם הכספית מגיעה, למשל, בדיוק לחצי הגובה, נכריז 50.

כעת נחליף את הכספית באלכוהול ונחזור על הניסוי. נמדוד ונסמן מחדש את הנקודות הקבועות, ואז נכניס המכשיר לנוזל בטמפרטורה שבה קריאת הכספית היא 50. לאכזבתנו נגלה שקריאת המכשיר עם האלכוהול תהיה שונה. אז מה השתבש? מי מהנוזלים סיפק את התשובה הנכונה?

שימו לב שהסקלה ששירטטנו היא ליניארית (מרחקים קבועים) על צינור הזכוכית, כלומר הנחנו שקיים קשר פונקציונאלי ליניארי בין הגובה בצינור לטמפרטורה, אבל אף אחד לא הבטיח לנו את זה. אף אחד גם לא הבטיח שאופי התגובה של נוזלים שונים לשינויי טמפרטורה הוא זהה.

כדי לכייל את השנתות על הצינור נרצה למדוד את הקשר הפונקציונלי בין גובה הנוזל בצינור לטמפרטורה, אבל איך בדיוק נעשה את זה אם עוד לא בנינו תרמומטר?

***

תשובות לשאלות?

התלבטתי אם לתת תשובות לשאלות שהעליתי ברשימה או להשאיר אותן פתוחות ולבסוף החלטתי על משהו באמצע.

לגבי מעגליות הטיעון לתקפות מכשיר המדידה, הסוד לדעתי הוא ששום דבר לא קדוש. פיזיקה היא לא מתמטיקה, ולעולם לא ניתן להוכיח דברים באופן מוחלט. גם הטיעון הראשוני וגם המסקנה שאליו הוא הוביל נתונים 'למתקפה' מתמדת. אבל גם אם נגלה שחלק מהתחושות שלנו שגויות, אין זה אומר שכולן שגויות וכל מה שהסקנו מהן שגוי. יש להעמיק, להבין את התופעה ולבנות תיאוריה שלמה יותר של השלישייה: מציאות-תחושה-מדידה, ולעדכן ולעדכן ולעדכן.

לגבי כיול השנתות של הסקלה, הנה רעיון ששווה דיון: כל מדי-החום מסכימים על הנקודות הקבועות. אם נערבב כמות שווה של מי-קרח ושל מים רותחים, מה אנחנו מצפים שתהיה הטמפרטורה של התערובת? אם החלטנו שהטמפרטורה צריכה להיות 50 (אמצע בין 0 ל-100), נוכל לגלות איזה תרמומטר מפיק עבור התערובת את הקריאה המתאימה ולהשתמש בו לכייל את כל השאר. האם נוכל להגן על ההנחה שהטמפרטורה של התערובת היא 50? שיטה זאת הומצאה בראשית המאה ה-19 והובילה לאינספור ויכוחים מדעיים על תקפותה, שקצרה היריעה כאן מלהכיל.

***

הרשימה מבוססת על חלקים מהספר:

Inventing Temperature: Measurement and Scientific Progress by Hasok Chang