ראשי > כללי > טוב מראה עיניים, על מיקרוסקופ אלקטרונים סורק

טוב מראה עיניים, על מיקרוסקופ אלקטרונים סורק

כאשר מכשיר חשמלי מפסיק לעבוד ישנן שתי גישות שכדאי לנקוט במקביל לאיתור התקלה. הראשונה היא לבדוק את תקינות המעגל החשמלי בנקודות שונות בעזרת מד-מתח למשל. השניה היא פשוט להתבונן במעגל ולראות האם משהו נראה לא כשורה כגון קבל שרוף או חוט מנותק. אך מה תעשו אם המעגל שלכם הוא שבב מוליך-למחצה שעליו מודפסים מספר עצום של טרנזיסטורים בגודל ננומטרי? שתי הגישות עדיין תקפות רק שכדי לראות את המעגל יש להשתמש במיקרוסקופ מתאים, למשל מיקרוסקופ אלקטרונים סורק (Scanning electron microscope או בקיצור SEM) שבו אנחנו רואים באמצעות אלקטרונים במקום באמצעות אור.

מהו אותו SEM וכיצד הוא עובד?

pollen in sem

תמונה 1: הדמיה של סוגים שונים של אבקנים באמצעות SEM בהגדלה פי 500, כך שגודלו של האבקן דמויי השעועית בפינה השמאלית למטה הוא כ-50 מיקרומטר (סדר גודל של קוטר שערה). המקור לתמונה: ויקיפדיה.

ראשית אציין שישנם מספר סוגים של מיקרוסקופ אלקטרונים אך אני מתמקד כאן ב-SEM, שהוא כלי נפוץ למדי במעבדות מחקר וגם בתעשיה. בניגוד לחלק גדול משיטות המיקרוסקופיה המתקדמות שנמצאות בשימוש כיום ה-SEM כלל אינו חדש. כבר בשנות ה-30 של המאה הקודמת פותחו המכשירים הראשונים במעבדות, ושווקו לראשונה באופן מסחרי בשנות ה-60.

אם במיקרוסקופ אופטי מואר משטח באמצעות קרני אור ונעשה שימוש בקרניים המוחזרות ממנו כדי להרכיב תמונה, במיקרוסקופ אלקטרונים נעשה שימוש בקרני אלקטרונים. היתרון העיקרי הוא שיפור משמעותי ברזולוציה המרחבית לרמה של ננומטרים בודדים (במיקרוסקופ אופטי – כמה מאות) עקב אורך הגל הקצר יותר של האלקטרונים. ישנם שני יתרונות חשובים נוספים ל-SEM ביחס לשיטות מיקרוסקופיה סורקות אחרות. הראשון הוא מהירות הסריקה הגבוהה שמאפשרת להתבונן בדגם בזמן אמת והשני הוא עומק השדה הגדול. הכוונה באחרון היא שהמרחק בין העצמים הרחוקים והקרובים ביותר שיראו בפוקוס בו-זמנית גדול באופן יחסי. תכונה זאת מאפשרת לראות עצמים תלת-ממדיים באיכות גבוהה, כפי שניתן לראות בתמונה 1.

הפיזיקה

כאשר קרן האלקטרונים פוגעת במשטח חלקם מתנגשים בו ומוחזרים עם אנרגיה גבוהה. לחלופין, חלקם חודרים לחומר, מתנגשים באטומים ונעים בכיוונים אקראיים תוך איבוד הדרגתי של האנרגיה שלהם. תוך כדי תהליך זה נפלטים מהחומר אלקטרונים בעלי אנרגיה נמוכה 'שנקרעו' מהאטומים ונקראים 'שְנִיוֹנִיים' ונפלטת גם קרינה אלקטרומגנטית. צורתו של הנפח שבו מתרחשת האינטרקציה של האלקטרונים החודרים עם האטומים דומה לדמעה או לבצל (ראו איור 2) וגודלו תלוי באנרגיה של הקרן, במספר האטומי של החומר ובצפיפותו. גם האלקטרונים הניתזים חזרה, גם האלקטרונים השניוניים שנפלטים וגם הקרינה ניתנים למדידה על ידי שימוש בגלאי מתאים שממוקם נכון. השימוש הסטנדרטי והמוכר ביותר, שבו אתמקד, הוא גילוי של אלקטרונים שניוניים.

קונטרסט

איור 2: תיאור סכמטי של פגיעת קרן אלקטרונים במשטח הדגם, ושל ההבדל באינטראקציה בין פגיעה במשטח אופקי למשטח אנכי.

קצהו של נפח האינטראקציה דמוי הבצל אמנם מגיע לעומק של כמה עשרות ננומטרים בתוך החומר אבל האנרגיה של האלקטרונים השניוניים נמוכה מידי ואינה מספיקה כדי להביאם לפני השטח וכדי לצאת מהחומר. רק אלקטרונים שמקורם בשכבה דקה ברוחב כמה ננומטרים בפני השטח מצליחים לצאת ולהגיע לגלאי.

נבחן שני מקרים המתוארים באיור 2. שתי קרני אלקטרונים פוגעות במשטח שעליו ישנה בליטה מלבנית. קרן אחת פוגעת במרכז הבליטה וקרן אחרת בדופן. הפס האדום מסמן את עומק השכבה הדקה ממנה נפלטים אלקטרונים שניוניים. ניתן לראות שבמקרה של פגיעה במשטח אנכי יש חפיפה רבה יותר בין המשטח האדום לבצל ולכן מספר האלקטרונים שיפלטו ויגיעו אל הגלאי רב יותר והאות הנמדד חזק יותר. בעקבות תכונה זאת משטחים אנכיים או כאלה בזווית יראו בתמונה בהירים יותר ממשטחים אופקיים. הניגודיות (contrast) מאפשרת לנו לייצר הדמיה של פני השטח ומעניקה לתמונה מראה תלת-מימדי. גורמים נוספים שתורמים לניגודיות בתמונת ה-SEM הם סוגי חומרים שונים, מוליכים אל מול מבודדים וגבהים שונים של פני השטח.

הפרטים הטכניים

כדי ליצור את קרן האלקטרונים ישנו ב-SEM חלק שדומה באופן רעיוני לתותח אלקטרונים שנמצא בכל טלוויזיה מהסוג הישן (CRT). האלקטרונים נפלטים עקב חימום קתודה מתכתית ועוברים דרך עדשות אלקטרוסטטיות ליישור הקרן ומיקודה. הקרן מכוונת מנקודה לנקודה במסלול מחזורי על ידי הפעלת שדה מגנטי לשם סריקת האזור הדרוש. גם התותח וגם הדגם הנסרק נמצאים יחדיו בואקום כדי למנוע מהאלקטרונים להתנגש במולקולות אוויר ולאבד כיוון ואנרגיה.

מבנה ה-sem

איור 3: דיאגרמה סכמטית המתארת את מבנה ה-SEM. המקור לאיור: ויקיפדיה, לשם הועלה על יד המשתמשים Steff, ARTE, MarcoTolo.

ב-SEM, בניגוד למיקרוסקופ אור, ההגדלה אינה נקבעת על ידי חוזק העדשות אלא על ידי היחס בין מספר הפיקסלים בתמונה, כלומר בין מספר נקודות הדגימה של הקרן, לבין המרחק האמיתי בין נקודה לנקודה על גבי הדגם. לדוגמה, נוכל לקבוע שאנחנו מייצרים תמונה שמורכבת מ-512 על 512 פיקסלים. כל פיקסל מקורו בנקודה על פני הדגם שבה פוגעת קרן האלקטרונים ונמדד האות הרלוונטי הנקלט בגלאי. ככל שהמרחק בין הפיקסלים גדול יותר כך התמונה היא של שטח רחב יותר וההגדלה קטנה יותר. התכונה הזאת מאפשרת לקבל באמצעות ה-SEM טווח עצום של הגדלות, בין פי 10 לפי 200,000 בערך, שזה פי 200 יותר גדול מההגדלה המרבית שניתן לקבל במיקרוסקופ אופטי.

הרזולוציה או כושר ההפרדה של ה-SEM תלויה ברוחב אלומת האלקטרונים. הכוונה היא לגודל 'הכתם' שהקרן תייצר אם תוקרן על מסך בזווית ישרה. בהדמיה של אלמנטים קטנים מרוחב הכתם התמונה שלהם 'תמרח' ורוחבם יראה כרוחב הקרן. רוחב האלומה נקבע על ידי אורך הגל ומערכת העדשות האלקטרוסטטיות. גורם נוסף המשפיע על הרזולוציה הוא רוחב נפח האינטראקציה של האלקטרונים בתוך החומר.

דגמים שנסרקים ב-SEM סטנדרטי צריכים להיות מוליכים חשמלית (לפחות בפני השטח) ומחוברים לאדמה (הארקה). דבר זה הכרחי כדי לפנות את האלקטרונים הנוספים שהגיעו מהקרן ונתקעו בדגם. אלקטרונים אלה ישנו את הפוטנציאל החשמלי ויגרמו לעיוות התמונה. אם הדגם אינו מוליך באופן טבעי ניתן לצפות אותו בשכבה דקה מאוד של חומר מוליך. כהערת אגב, קיים סוג נוסף של SEM שבו ניתן לבחון גם דגמים לא מוליכים וללא ציפוי.

ולסיכום, טוב מראה עיניים: מומלץ להציץ בגלריית תמונות SEM בתחתית דף הויקיפדיה בנושא המדגימה יפה את המנעד הרחב של השימושים למכשיר.

מודעות פרסומת
  1. 21/02/2014 ב- 4:38 pm

    תודה על הפוסט, אבל אני חייב לתקן אותך בכמה דברים:
    ראשית, הופתעתי שכתבת שאחד היתרונות של SEM הוא "להתבונן בדגם בזמן אמת". שהרי הדגימה מצופה בחומר מוליך, וכמוכן -היא נמצאת בואקום ולכן אין שום אפשרות לבחון תהליכים ביולוגיים דינמיים (כלומר דגימה חיה), זאת בניגוד למיקרוסקופ אור.
    שנית, לגבי היתרון ברזולוציה: זה נכון שהרזולוציה היא משמעותית טובה יותר, ברוב המקרים. הרזולוציה המקסימלית של מיקרוסקופ אור פלואורסנטי רגיל היא כ-200 ננומטר (זהו גבול הdiffraction limit). http://wp.me/p2jizY-B
    אולם, כיום יש טכניקות של סופר-רזולוציה שבאמצעות שיטות צילום ואלגוריתמים מיוחדים יכולים להגיע לרזולוציה של עשרות ננומטרים, ואף לננומטרים בודדים. http://wp.me/p2jizY-8o
    סופר רזולוציה היא עדיין בעיקר נחלתם של מומחים, אפשר לומר, אבל התחום הולך ומתפתח בקצב מטורף ואני מאמין שתוך עשור זו כבר תהיה שיטה שגורה במעבדות.

  2. 21/02/2014 ב- 6:50 pm

    galicolagfb:
    העלת נושאים מעניינים, אני חושש שבחלקם פשוט לא הובנתי נכון ובחלקם אנחנו חולקים באשמה, אני אסביר.
    ההערה הראשונה שלך, לדעתי, מציפה את העובדה שאנחנו באים מרקע שונה, אבל גם שאני לא הייתי מספיק ברור. כשאני חושב על SEM אני חושב קודם כל על צילום של מוליכים-למחצה ושל פגמים בטרנזיסטורים. בתחום הזה שום דבר לא חי, והדגמים מוליכים ואין צורך בציפוי. הכוונה שלי ב-"להתבונן בדגם בזמן אמת" היא שבניגוד לטכניקות סורקות אחרות כמו STM, AFM (או אפילו קונפוקלי) אני יכול להתבונן בתמונה ללא הצורך להמתין לסוף הסריקה כי היא מאוד מהירה (כמו בטלוויזיה). אני מבין כעת איך המשפט שלי עלול לבלבל ואני אולי אכניס אח"כ תיקון או הבהרה למה התכוונתי. תודה בכל מקרה.
    לגבי ההערה השניה, אני לא חושב ששיטות סופר-רזולוציה באור יתחרו אי פעם ביכולת של SEM, פשוט הפרש גדול מידי באורכי גל. היתרון העצום של סופר-רזולוציה היא שזאת מיקרוסקופית אור והיא מתאימה יותר לתחום הביולוגיה, שם היא כבר עושה חיל וכמו שאתה כותב תמשיך ותתפשט. אבל אני מזכיר שחלק גדול מהמחקר המדעי אינו ביולוגי אלא חומרים-כימיה-פיזיקה. ולסיום אני אזכיר שכתבתי בעבר רשימה שלמה על אחת משיטות הסופר-רזולוציה האופטיות STORM. קישור: http://wp.me/p201vp-ba

    • 22/02/2014 ב- 12:48 am

      מה זאת אומרת חלק גדול מהמחקר המדעי אינו ביולוגי? פחחח… מה שלא ביולוגיה לא נחשב!
      🙂 http://xkcd.com/435/
      אכן, מודה, אני ביו-צנטרי ולא חשבתי על השימושים האחרים (ולמרות שדיברת בתחילה על שימושים באלקטרוניקה, הבאת תמונה מתחום הביולוגיה).

  1. 13/03/2015 ב- 4:37 pm

להשאיר תגובה

הזינו את פרטיכם בטופס, או לחצו על אחד מהאייקונים כדי להשתמש בחשבון קיים:

הלוגו של WordPress.com

אתה מגיב באמצעות חשבון WordPress.com שלך. לצאת מהמערכת / לשנות )

תמונת Twitter

אתה מגיב באמצעות חשבון Twitter שלך. לצאת מהמערכת / לשנות )

תמונת Facebook

אתה מגיב באמצעות חשבון Facebook שלך. לצאת מהמערכת / לשנות )

תמונת גוגל פלוס

אתה מגיב באמצעות חשבון Google+ שלך. לצאת מהמערכת / לשנות )

מתחבר ל-%s

%d בלוגרים אהבו את זה: