ראשי > כללי > "הוא טוב כל עוד הוא עובד", מבט פרגמטי על טיבן של תיאוריות מדעיות

"הוא טוב כל עוד הוא עובד", מבט פרגמטי על טיבן של תיאוריות מדעיות

האדם החושב תמיד שאף להסביר את העולם, כלומר לנסח בעזרת חוקים ותובנות את אשר חווה, לחזות את הנולד ולשלוט בעתידו (ולעיתים גם בעתידם של אחרים). החל באריסטו שניסח חוקי תנועה, דרך גלילאו וניוטון שהפריכו אותם (עקרון ההתמדה) וניסחו את חוקי המכאניקה ('הקלאסית') המוכרים לנו היום, וכלה במדענים העובדים על התורות הפיסיקליות של ימינו (תורת היחסות, מכאניקת הקוונטים ועוד).

בהתבוננות נוספת מתגלה לכאורה דפוס מדאיג, שהרי גם המכאניקה הניוטונית הופרכה ותורת היחסות ומכאניקת הקוונטים החליפו אותה. מסתבר למשל שהמכאניקה הניוטונית אינה אלא מקרה פרטי וצפויה להניב תחזיות נכונות רק במקרה של מהירויות הנמוכות בהרבה ממהירות האור. אך האם זה סוף הסיפור? האם המדע נידון לכישלון בניסיונו לתאר את הטבע או שאנו פשוט עוד לא מצאנו את התורה המלאה? האם יום אחד נוכל לנסח את התאוריה של הכול (The Theory of Everything), או לרשום משוואה שתתחיל במפץ הגדול ותחזה כל רגע מאוחר יותר? האם התיאוריות של היום הם רק עניין חולף ואם כן, האם אנו צריכים לדאוג מכך? התשובה לדעתי היא כן ולא, כפי שאפרט בהמשך.

גלילאו

ציור של גלילאו גליליי, המקור לתמונה: ויקיפדיה.

כדי להעמיק ברעיון התיאוריה הפיסיקלית עלינו תחילה לשאול כיצד בכלל נבנית תיאוריה כזאת. תיאוריה או מודל חדש יכולים להיוולד כהסבר לניסוי שתוצאותיו אינן תואמות את המודל הקיים. לחלופין, לפעמים זהו הניסוי שבא לבדוק תיאוריה חדשה ולעמת אותה עם המציאות. אנסה להדגים זאת בעזרת נושא הקרוב לליבי – המוליכים למחצה. בשנת 1947 הוצג במעבדות בל הטרנזיסטור הראשון שזיכה את ממציאיו בפרס נובל בפיסיקה תשע שנים לאחר מכן. ב-1958 הוצג המעגל המשולב הראשון ומאז הטכנולוגיה שועטת קדימה ללא מעצורים. שבבי הסיליקון נמצאים (כמעט) בכל מקום. בכל פעם שאתם משתמשים במחשב כדי להתעדכן מה חדש שם באינטרנט אתם משתמשים בשבבי סיליקון (שהוא מוליך למחצה).

Bardeen_Shockley_Brattain_1948

התמונה המפורסמת מ-1948 במעבדות בל של בראטיין, שוקלי ובארדין ממציאי הטרנזיסטור. השלושה זכו בפרס הנובל לפיזיקה בשנת 1956. המקור לתמונה: ויקיפדיה.

אז מהו מוליך למחצה? ראשית נסביר מהם מוליכים ומבודדים, כאשר נתמקד בגבישים. מוליך (למשל מתכת) הוא חומר שבו תמיד יש אלקטרונים פנויים להולכה חשמלית. לעומת זאת חומר גבישי מבודד הוא חומר בו קיים מחסום אנרגטי גדול המונע מאלקטרונים להשתתף בהולכה. אלה כמובן אינן ההגדרות הפיסיקליות המדויקות, אך הן מספיקות עבור הנקודה שאני אנסה להבהיר.

מוליכים למחצה הם בעצם מבודדים שהמחסום האנרגטי בהם קטן מספיק כך שהאנרגיה התרמית (כלומר – חום) בטמפרטורה יום-יומית רגילה תגרום להם להוליך במידה מסוימת. כמו כן, על ידי החדרת אטומים זרים מסוג מסוים למוליכים למחצה אנו יכולים לגרום לעלייה חדה במוליכות החשמלית שלהם. כך קיבלנו חומרים שניתן לשלוט באופן מדויק במוליכות שלהם, וזה מה שהופך אותם לחשובים כל כך בתעשיית השבבים. זאת בניגוד למוליכים ומבודדים שההולכה החשמלית בהם או נמוכה או גבוהה מידי ותלויה בטמפרטורה במידה רבה.

כעת נרצה לבנות מודל פיסיקלי לתיאור ההולכה בחומרים אלה. ראשית אנו משתמשים בעקרונות אחת התיאוריות הקלאסיות בפיסיקה, הפיסיקה הסטטיסטית, לנסח את ההתנהגות של חלקיקי גז. לאחר מכן אנו מניחים שאלקטרונים במתכת מתנהגים כחלקיקי גז עד כדי תיקונים הנובעים מתורת הקוונטים (חוק האיסור של פאולי, חישוב ספקטרום האנרגיה של האלקטרונים). יש לשים לב שכאן כבר מעורבבים יחדיו עקרונות פיסיקליים קלאסיים וקוונטיים. כעת נשתמש במודל הזה לתיאור המוליכים למחצה עם תיקון, אד הוק, נוסף הקשור להוספת המחסום האנרגטי של האלקטרונים בדרך להולכה חשמלית. בעזרת המשוואות שקיבלנו נוכל לחשב כמה אלקטרונים פנויים להולכה בפיסת מוליך למחצה כתלות בפרמטרים שונים. כעת נוכל להשתמש במודל הולכה קלאסי ולמצוא מה ההולכה החשמלית הצפויה במעגל שניבנה בעזרתו.

המודל שהוצג מכיל קירובים רבים וסלט של רעיונות מודבקים מתחומי פיסיקה שונים. קשה להאמין שהוא מתאר את הטבע בצורה נאמנה. עם זאת, באופן בלתי נתפס, הוא חוזה בצורה מדויקת את תוצאות הניסויים כבר עשרות שנים ונמצא בשימוש במחקר ובתעשייה עד ימים אלה. המחשב שלכם עובד, לא?

אז מה ניתן ללמוד מכל זה? אני מגדיר את הגישה שלי לנושא כסופר-פרגמטית. עבורי כל תיאוריה שמצליחה לחזות בעקביות את תוצאותיהם של ניסויים רלוונטיים, וניתן בעזרתה להגיע לקידום ממשי של המדע מקובלת עלי. ומה יהיה כאשר נמצא ניסוי שעבורו התיאוריה אינה עובדת? נחזור לשולחן העבודה ונכתוב אחת חדשה. מודל הוא טוב כל עוד הוא עובד.

רגע, רגע, אבל מה עם האמת? האם המודל שניסחנו הוא האמת? לטעמי השאלות האלה אינן פרגמטיות כלל, ולכן מחוץ לתחום השיפוט שלי.

————————————————————————

הרשימה פורסמה במקור באתר שפינוזה זצ"ל לפני כשנתיים-שלוש. למעשה זאת הרשימה הראשונה שכתבתי אי פעם. עקב ביטולו של אתר שפינוזה, ומכיוון שאני עדיין אוהב אותה החלטתי לערוך את הרשימה מחדש ולהעלות אותה כאן בבלוג.

מודעות פרסומת
  1. asddasdasdasdas
    27/12/2012 בשעה 9:01 pm

    אני חושב שצריך להדגיש את ההבדלה בין דברים שאנחנו יודעים ולבין דברים שאנחנו לא מסוגלים לחשב. אנחנו למשל מבינים למה שלושה גופים מסתובבים זה סביב זה (ברמה הקלאסית), אבל אנחנו לא מסוגלים לחשב את התנועה באופן אנליטי. (כלומר, אפשר להוכיח שלא ניתן לחשב את זה בגלל שהבעיה לא אינטגרבילית)

  2. 27/12/2012 בשעה 9:28 pm

    אני מסכים.
    ברשימה אני התכוונתי לדברים שאנחנו לא מבינים ומנסים להסביר, בין אם אנחנו יכולים לחשב ובין אם לא. ואם אני כבר פה אז אני אתן דוגמא נוספת: מוליכות-על.
    בהתחלה לא ידעו להסביר את זה. אז אותו בארדין מהמוליכים למחצה ועוד שני שותפים הגו מודל וזכו עבורו בפרס הנובל (עבור בארדין זה היה השני). כיום מודל ה-BCS לא מסוגל להסביר מוליכות-על בטמ"פ גבוהות. אנחנו עדיין מחכים למודל חדש. אבל האם המודל הישן בכלל נכון? האם זה בסדר שהוא עובד רק לחלק מהחומרים ולא לאחרים? האם המודל החדש שיבוא יכלול אותו כמקרה פרטי? זה סוג השאלות שאני שואל ברשימה זאת.

  1. No trackbacks yet.

כתיבת תגובה

הזינו את פרטיכם בטופס, או לחצו על אחד מהאייקונים כדי להשתמש בחשבון קיים:

הלוגו של WordPress.com

אתה מגיב באמצעות חשבון WordPress.com שלך. לצאת מהמערכת / לשנות )

תמונת Twitter

אתה מגיב באמצעות חשבון Twitter שלך. לצאת מהמערכת / לשנות )

תמונת Facebook

אתה מגיב באמצעות חשבון Facebook שלך. לצאת מהמערכת / לשנות )

תמונת גוגל פלוס

אתה מגיב באמצעות חשבון Google+ שלך. לצאת מהמערכת / לשנות )

מתחבר ל-%s

%d בלוגרים אהבו את זה: